Generación de energía eléctrica en la edificación mediante tecnología de disco Stirling =Electrical energy generation in building by means of Stirling dish technology

Autores/as

  • Carlos Morón Universidad Politécnica de Madrid.
  • Daniel Ferrández Universidad Politécnica de Madrid
  • Jorge Pablo Díaz Institución Profesional Salesiana
  • Pablo Saiz Universidad Politécnica de Madrid

DOI:

https://doi.org/10.20868/ade.2017.3567

Palabras clave:

Energía solar de concentración, captador paraboloidal, motor Stirling, Arduino, Concentrating solar power, paraboloidal collector, Stirling engine

Resumen

Resumen

La creciente demanda de energía acompañada de los elevados niveles de emisión de gases contaminantes a la atmosfera hace patente la necesidad de encontrar nuevos sistemas de producción de energía. Una de las posibles alternativas se encuentra en la energía solar de concentración, y más concretamente en la tecnología termosolar con motor Stirling que alcanza unos niveles de rendimiento muy superiores a la energía solar fotovoltaica en cuanto a producción de energía eléctrica. En este trabajo se muestra el diseño y la caracterización de un prototipo de captador paraboloidal con motor Stirling, que permite obtener datos reales del funcionamiento de este tipo de sistemas. Esto permitirá modelizar de manera real el comportamiento esperado de equipos comerciales reales antes de abordar su implantación en edificios y viviendas unifamiliares.

Abstract

The increasing demand for energy accompanied by high level of emission of the contaminating gases into the atmosphere underscores the need to find new energy production systems. One of the possible alternatives is concentrating solar power and, more specifically, solar thermal technology with a Stirling engine that reaches higher performance levels than photovoltaic solar energy in terms of electricity generation. This paper shows the design and characterization of a prototype paraboloidal collector with a Stirling engine that allows obtaining real data of this type of systems functioning. This will allow modelling in a real way of expected performance of real commercial devices before approaching their introduction in buildings and single-family houses.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abbas, M. Boumeddane, B. Said, N. Chikouche, A. (2011). Dish Stirling technology: A 100 MW solar power plan using hydrogen for Algeria. International Journal of Hydrogen Energy, Vol. 36, Issue 7, Abril 2011, pp. 4305-4314. https://doi.org/10.1016/j.ijhydene.2010.12.114

Al-Dafie, A. M. Dahdolan, M. Al-Nimr, M. (2016). Utilizing the heat rejected from a solar dish Stirling engine in potable water production. Solar Energy, Vol. 136, 15 Octubre 2016, pp. 317-326. https://doi.org/10.1016/j.solener.2016.07.007

Documento Básico DB-HE, “Ahorro de Energía”, Código Técnico de la Edificación. BOE, nº219, pp. 67137-67209

Falck, D. y Colle`e, B. (2012). Freecad [How-To], 1o ed.; Packt Publishing: United Kingdom; 2012; pp. 1-70.

Fan, j. Wu, L. Zhang, F. Xiang, Y. Zheng, J. (2016). Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956-2015. Journal of Hydrology, vol. 542, pp. 923-937. https://doi.org/10.1016/j.jhydrol.2016.09.060

Ferreira, A. Nunes, M. Teixera, J. Martins, L. Teixeira, F. (2016). Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes. Energy, Vol. 111, 15 Septiembre 2016, pp. 1-17. https://doi.org/10.1016/j.energy.2016.05.091

Fuentes, M. Vivar, M. Burgos, J.M. Aguilera, J. Vacas, J. A. (2014). Design of an accurate low-cost autonomous data logger for PV system monitoring using ArduinoTM that complies with IEC standards. Solar Energy Materials and Solar Cells, Vol. 130, Noviembre 2014, pp. 529-543. https://doi.org/10.1016/j.solmat.2014.08.008

Gasparatos, A. Doll, C.N. Estaban, N. Ahmed, A. Olang, T.A. (2017). Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and sustainable energy reviews, Vol. 70, Abril 2017, pp. 161-184. https://doi.org/10.1016/j.rser.2016.08.030

Gil, C.M.; Gil, M.-A.C.; Castro, M.; Santos, C.A. e Ibañez, C.J. (2001). Energía solar térmica de media y alta temperatura. Monografías técnicas de energías renovables, 1rd Ed..; PROGENSA-Promotora General de Estudios: Sevilla, España, pp. 1-68.

Hafez, A.Z. Soliman, A. El-Metwally, K. A. Ismail, I.M. (2017). Design analysis factor and specifications of solar dish technologies for different systems and applications. Renewable and Sustainable Energy Reviews, Vol. 67, Enero 2017, pp. 1019-1036. https://doi.org/10.1016/j.rser.2016.09.077

Kadri, Y. Hadj Abdallah, H. (2016). Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification. Energy Conversion and Management, Vol. 129, 1 Diciembre 2016, pp. 140-156. https://doi.org/10.1016/j.enconman.2016.10.024

Molino, A. Giordano, G. Motola, V. Fiorenza, G. Nanna, F. Braccio, G. (2013). Electricity production by biomass steam gasification using a high efficiency technology and low environmental impact. Fuel, vol. 103, pp. 179-192. https://doi.org/10.1016/j.fuel.2012.06.104

Real Decreto 1027/2007, de 20 de Julio, por el que que se aprueba el Reglamento de Instalacioens Térmicas en Edificios (RITE). BOE, nº207, pp. 35931-35984.

Robbins, A. (2015). Health consequences of climate change interventions. The Lancet, 2015, Volume 386, Issue 10006, Noviembre, pp. 1819 https://doi.org/10.1016/S0140-6736(15)00549-8

Rovense, F. (2015). A case of study of a concentrating solar power plant with Unfired Joule-Brayton cycle. Energy Procedia, 2015, Volume 82, December, pp. 978 – 985. https://doi.org/10.1016/j.egypro.2015.11.855

Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M. y Meroni, I. (2015). An open source low-cost wireless control system for a forced circulation solar plant, Sensors 2015, 15(11).

Sauer, J. Kuehl, H. (2017). Numerical model for Stirling cycle machines including a differential simulation of the appendix gap. Applied Thermal Engineering, Vol. 111, 25 Enero 2017, pp. 819-833. https://doi.org/10.1016/j.applthermaleng.2016.09.176

Segura, J. (1993). Termodinámic la técnica. Ed. REVERTÉ, S.A. Barcelona, España, ISBN: 84-291-4352-1.

Stellmes, M. Roder, A. Udelhoven, T. Hill, J. (2013). Mapping syndromes of land change in Spain with remote sensing time series demographic and climatic data. Land Use Policy, Vol. 30, Issue 1, Enero 2013, pp. 685-702. https://doi.org/10.1016/j.landusepol.2012.05.007

Warren, J.-D.; Adams, J. y Molle, H. (2001). Arduino robotics, 1o ed.; Apress; New York, NY, USA, 2001; pp.1-180.

Yi, H. Srinivasan, R. Willian, W. Tilley, D.R. (2017). An ecological understanding of net-zero energy building: Evaluation of sustainability based on emergy theory. Journal of Cleaner Production, vol. 143, pp. 654-671. https://doi.org/10.1016/j.jclepro.2016.12.059

Descargas

Publicado

2017-08-31

Número

Sección

Artículos

Cómo citar

Generación de energía eléctrica en la edificación mediante tecnología de disco Stirling =Electrical energy generation in building by means of Stirling dish technology. (2017). Anales De Edificación, 3(2), 9-16. https://doi.org/10.20868/ade.2017.3567