Rediseño del proceso de fabricación de placas para falso techo de escayola. Estudio de su viabilidad técnica, económica y medioambiental

Autores/as

DOI:

https://doi.org/10.20868/ade.2024.5366

Resumen

Hoy en día el sector de la construcción se enfrenta a un gran desafío, la creciente conciencia ambiental de un mercado más informado que manifiesta el deseo de que se representen modelos de negocio medioambientalmente más sostenibles. En este trabajo, se aborda el diseño y caracterización de un novedoso panel prefabricado de escayola elaborado bajo criterios de economía circular. Para ello, se han empleado residuos de neumáticos fuera de uso (NFU) de diámetro comprendido entre 2-4 mm, que han servido como sustitución parcial en volumen del material de escayola original. De esta manera, se consigue aligerar el peso de las placas prefabricadas manteniendo un nivel óptimo para las resistencias mecánicas de estos compuestos. Adicionalmente, se ha analizado el proceso de fabricación de estos compuestos, las oportunidades de negocio para estos paneles y se ha realizado un estudio de la cadena de suministro de los mismos. Con ello, se ponen de manifiesto los beneficios tanto económicos, como medioambientales, derivados de la integración de criterios de economía circular en el diseño de los materiales de construcción tradicionales. Así, con este trabajo se contribuye a visualizar la necesidad de explorar nuevas alternativas para avanzar hacia un crecimiento económico responsable en el sector de la construcción.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. Altamura, P.; Ceruti, F.; Viglia, S.; Beylot, A.; Cutaia, L. (2023). Environmental, social, and economic implications of critical raw materials’ extraction from residues. Mining and Processing Residues, 219-274.

2. Álvarez M, Santos P, Lopes P, Abrantes D, Ferrández D. (2022). Performance Characterisation of a New Plaster Composite Lightened with End-of-Life Tyres’ Recycled Materials for False Ceiling Plates. Materials, vol. 15(16):5660.

3. Álvarez, M.; Ferrández, D.; Zaragoza-Benzal, A.; Colorado-Pastor, B. (2024). Initiative to Increase the Circularity of HDPE Waste in the Construction Industry: A Physico-Mechanical Characterization of New Sustainable Gypsum Products. Applied Sciences, vol. 14, 478.

4. Arshad, H.; Zayed, T. (2022). Critical influencing factors of supply chain management for modular integrated construction. Automation in Construction, vol. 144, 104612.

5. Caro, D.; Lodato, C.; Damgaard, A.; Cristóbal, J.; Foster, G.; Flachenecker, F.; Tonini, D. (2024). Environmental and socio-economic effects of construction and demolition waste recycling in the European Union. Science of the Total Environment, vol. 908, 168295.

6. Construnario. (2023). Placas de yeso. [En línea]. Disponible en: https://www.construnario.com/notiweb/47445/placas-de-fibra-yeso-fermacell# (último acceso 5 de septiembre de 2023).

7. Castellón, F.J.; Ayala, M.; Lanzón, M. (2022). Influence of tire rubber waste on the fire behavior of gypsum coatings of construction and structural elements. Materiales de Construcción, vol. 345, nº 72.

8. Castro Sales, D.; Cabral, A.E.; Medeiros, M.S. (2021). Development of fiberboard panels manufactured from reclaimed cement bags. Journal of Building Engineering, vol. 34, 2021.

9. Corinaldesi, V.; Donnini, J.; Nadinocchi, A. (2015). Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Construction and Building Materials, vol. 94, pp. 337-345.

10. Cortés, D.; Traxler, A.A. & Greiling, D. (2023). Sustainability reporting in the construction industry – Status quo and directions of future research. Heliyon, vol. 9, nº 11.

11. Derakhshan, Z.; Taghi, M.; Hossein, A.; Oiveri, G.; Framarzian, M.; Mansooreh, D.; Ferrante, M. (2017). A new recycling technique for the waste tires reuse. Enrionmental Research, vol. 158, pp. 462-469.

12. EN 13279-2:2014. Gypsum binders and gypsum plasters - Part 2: Test methods.

13. Ferrández, D.; Álvarez, M.; Zaragoza-Benzal, A.; Santos, P. (2024). Eco-Design and Characterization of Sustainable Lightweight Gypsum Composites for Panel Manufacturing including End-of-Life Tyre Wastes. Materials, vol. 17, 635.

14. Forbes España, «El 93% de las pymes industriales sufre incrementos en sus costes de producción por la inflación, según Hiscox». [En línea]. Disponible en: https://cutt.ly/MwC39zeu (último acceso 23 de septiembre de 2023).

15. Hand, X.; Cai, Q. (2024). Environmental regulation, green credit, and corporate environmental investment. Innovation and Green Development, vol. 3, no. 6, 100135.

16. Herrero, S.; Mayor, P.; Hernández-Olivares, F. (2013). Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Materials & Design, vol. 47, pp. 633-642.

17. Li, B.; Chen, W.; Xu, C.; Hou, P. (2018). Impacts of government subsidies for environmental-friendly products in a dual-channel supply chain. Journal of Cleaner Production, 171, 1558-1576.

18. López-Zaldívar, Ó.; Lozano-Díez, R.; Herrero, S.; Mayor, P.; Hernández-Olivares, F. (2017). Effects of water absorption on the microstructure of plaster with end-of-life tire rubber mortars. Construction and Building Mateirals, vol. 150, pp. 558-567.

19. Mordor Intelligence, «Industria de construcciones prefabricadas en España - Estudio - Crecimiento, tendencias, impacto de COVID-19 y previsiones (2024 - 2029)» [En línea]. Disponible en: https://www.mordorintelligence.com/ (último acceso 23 de septiembre de 2023).

20. Moschen-Schimek, J.; Kasper, T.; Huber-Humer, M. (2023). Critical review of the recovery rates of construction and demolition waste in the European Union – An analysis of influencing factors in selected EU countries. Waste Management, vol. 167, pp. 150-164.

21. Placo Saint-Gobain. “Iberyola E-35 (Technical Information)”. 2023. [En línea]. Disponible en: https://www.placo.es/Producto/iberyolar#marketing-description (úlitmo aceso 21 de Agosto de 2023).

22. Pinto, N.; Fioriti, C.; Akasaki, J.; Acuncha, T.; Okimoto, F. (2020). Performance of plaster composites incorporating rubber tire particles. Revista de la Construcción, vol. 35, pp. 215-231.

23. Reichlc, C.; Schatz, M. «Volume 38 World Mining Data 2023», 2023.

24. Romero-Gómez, M.I.; Sivla, R.V.; de Brito, J.; Flores-Colen, I. (2023). Prototype of alveolar gypsum blocks with plastic waste addition for partition walls: Physico-mechanical, water-resistance and life cycle assessment. Journal of Clenaer Production, vol. 423, 139820.

25. Santos, P.; Mateus, D.; Ferrández, D.; Verdú, A. (2022). Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls. Energies, vol. 15, 8169.

26. Serna, Á.; del Río, M; Palomo, J.G.; González, M. (2013). Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Construction and Building Materials, vol. 35, pp. 633-641.

27. Shih, H.C.; Lai, Y.T.; Yang, H.Y.; Ma, H. (2024). Development of secondary material competition modelling for evaluation of incentive policies on plastic waste. Journal of Cleaner Production, 434, 140195.

28. Tafreshi, S.N.M.; Amiri, A.; Dawson, A.R. (2023). Sustainable 42 use of End-of-Life-Tires (ELTs) in a vibration isolation system. Construction and Building Materials, vol. 405, 133316.

29. Thomas, B.S.; Gupta, R, C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, vol. 113, pp. 86-92.

30. UNE 102042:2023. Gypsum plasters. Other test methods.

31. UNE-EN 12859:2012. Gypsum blocks - Definitions, requirements and test methods.

32. Wang, Z.; Hu, H.; Gong, J.; Ma, X.; Xiong, W. (2019). Precast supply chain management in off-site construction: A critical literature review. Journal of Cleaner Production, vol. 232, 1204-1217.

33. Zakerzadeh, M.; Shahbodagh, B.; Ng, J.; Khalili, N. (2024). The use of waste tyre rubber in Stone Mastic Asphalt mixtures: A critical review. Construction and Building Materials, vol. 418, 135420.

34. Zaragoza-Benzal, A.; Ferrández, D.; Diaz-Velilla, J.P.; Zúñiga-Vicente, J.A. (2023a). Manufacture and characterisation of a new lightweight plaster for application in wet rooms under circular economy criteria. Case Studies in Construction Materials, vol. 19, e02380.

35. Zaragoza-Benzal, A.; Ferrández, D.; Santos, P.; Morón, C. (2023b). Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria. Materials, vol. 16, nº 243.

36. Zerin, N.H.; Rasul, M.G.; Jahirul, M.I.; Sayem, A.S.M. (2023). End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. Science of the Total Environment, vol. 905, 166981.

Descargas

Publicado

2024-08-31

Número

Sección

Artículos

Cómo citar

Rediseño del proceso de fabricación de placas para falso techo de escayola. Estudio de su viabilidad técnica, económica y medioambiental. (2024). Anales De Edificación, 9(2), 31-42. https://doi.org/10.20868/ade.2024.5366

Artículos más leídos del mismo autor/a