Application of the finite element method for the analysis of the seismic behaviour of the mosque-cathedral of Córdoba
DOI:
https://doi.org/10.20868/ade.2024.5364Keywords:
Finite element method, Historical buildings, Seimic baehaviour, Pushover, Cultural heritageAbstract
The main objective of this work is to apply the finite element method to the modelling of the sector of Abd' al-Rahman I of the Mosque-Cathedral of Cordoba. This building is of great cultural and heritage value. For this reason, it was declared a World Heritage Site by UNESCO in 1984. The monument is located in the south of the Iberian Peninsula. This area is characterised by moderate seismic activity. For this reason, it is important to analyse the structural and seismic behaviour of the monument for its preservation and safety analysis. In this work, a 3D model has been developed in the open software OpenSees. For this purpose, non-destructive tests have been carried out on the building. For the analysis of its behaviour, vertical and horizontal static analyses (pushover type) have been carried out. As a result, it has been obtained that the building has a worse seismic behaviour in the direction perpendicular to the arches.
Downloads
References
1. Altunişik, A. C.; Sunca, F.; Genç, A.F.; Tavşan, C. “Post-Earthquake Damage Assessments of Historic Mosques and Effects of Near-Fault and Far-Fault Ground Motions on Seismic Responses,” International Journal of Architectural Heritage, pp. 1–36, Dec. 2021, doi: 10.1080/15583058.2021.2011475.
2. Amaro-Mellado, J. L.; Morales-Esteban, A.; Asencio-Cortés, G.; Martínez-Álvarez, F. “Comparing seismic parameters for different source zone models in the Iberian Peninsula,” Tectonophysics, Oct. 2017, doi: 10.1016/j.tecto.2017.08.032.
3. Amaro-Mellado, J. L.; Morales-Esteban, A.; Martínez-Álvarez, F., “Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system,” Cent Eur J Oper Res, 2017, doi: 10.1007/s10100-017-0506-7.
4. Asteris, P. G.; Cotsovos, D. M.; Chrysostomou, C. Z.; Mohebkhah, A.; Al-Chaar, G. K. “Mathematical micromodeling of infilled frames: State of the art,” Eng Struct, vol. 56, pp. 1905–1921, Nov. 2013, doi: 10.1016/j.engstruct.2013.08.010.
5. Cattari S. et al., Nonlinear modeling of the seismic response of 21 masonry structures: critical review and open issues towards engineering practice, no. 0123456789. Springer Netherlands, 2021. doi: 10.1007/s10518-021-01263-1.
6. Cattari, S.; Camilletti, D.; D’Altri, A. M.; Lagomarsino, S. “On the use of continuum Finite Element and Equivalent Frame models for the seismic assessment of masonry walls,” Journal of Building Engineering, vol. 43, no. January, p. 102519, 2021, doi: 10.1016/j.jobe.2021.102519.
7. Cattari S.; Magenes, G. “Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1901–1936, Mar. 2022, doi: 10.1007/S10518-021-01078-0.
8. Cattari S.; Magenes, G. “Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1901–1936, Mar. 2022, doi: 10.1007/s10518-021-01078-0.
9. Cosgun, T.; Akan, A. E.; Uzdil, O.; Örmecioğlu, A. Er, H. T.; Sayin, B. “Post-restoration seismic performance assessment of a historic hypostyle mosque in Anatolia (13th century AD),” Case Studies in Construction Materials, p. e01849, Jan. 2023, doi: 10.1016/j.cscm.2023.e01849.
10. D’Altri A. M. et al., “Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification,” Archives of Computational Methods in Engineering, vol. 27, no. 4, pp. 1153–1185, 2020, doi: 10.1007/s11831-019-09351-x.
11. D’Altri, A. M.; Cannizzaro, F.; Petracca, M.; Talledo, D. A. “Nonlinear modelling of the seismic response of masonry structures: Calibration strategies,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1999–2043, Mar. 2022, doi: 10.1007/S10518-021-01104-1.
12. Dinani, A. T.; Bisol, G. D.; Ortega, J.; Lourenço, P. B. “Structural Performance of the Esfahan Shah Mosque,” Journal of Structural Engineering, vol. 147, no. 10, p. 05021006, Jul. 2021, doi: 10.1061/(ASCE)ST.1943-541X.0003108.
13. Endo, Y.; Pelà, L.; Roca, P. “Review of Different Pushover Analysis Methods Applied to Masonry Buildings and Comparison with Nonlinear Dynamic Analysis,” https://doi.org/10.1080/13632469.2016.1210055, vol. 21, no. 8, pp. 1234–1255, Nov. 2016, doi: 10.1080/13632469.2016.1210055.
14. European Union, Eurocode-8: Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings. Brussels, Belgium, 2005. [Online]. Available: http://www.phd.eng.br/wp-content/uploads/2014/07/en.1998.3.2005.pdf
15. European Union, Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. Belgium, 2004.
16. Fajfar, P. “A nonlinear analysis method for performance‐based seismic design,” Earthquake Spectra, vol. 16, no. 3, pp. 573–592, 2000, doi: https://doi.org/10.1193/1.1586128.
17. Fazendeiro Sá, L.; Morales-Esteban, A.; Durand, P. “A Seismic Risk Simulator for Iberia,” Bulletin of the Seismological Society of America, vol. 106, no. 3, pp. 1198–1209, 2016, doi: 10.1785/0120150195.
18. Herrero Romero, S. “Teoría y práctica de la restauración de la Mezquita-Catedral de Córdoba durante el siglo XX,” Universidad Politécnica de Madrid, 2015. doi: 10.20868/UPM.thesis.39987.
19. Kaya, A. et al., “Post-earthquake damage assessments of unreinforced masonry (URM) buildings by shake table test and numerical visualization,” Eng Fail Anal, vol. 143, p. 106858, Jan. 2023, doi: 10.1016/j.engfailanal.2022.106858.
20. Kržan, M.; Gostič, S.; Cattari, S.; Bosiljkov, V. “Acquiring reference parameters of masonry for the structural performance analysis of historical buildings,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 203–236, Jan. 2015, doi: 10.1007/s10518-014-9686-x.
21. Lagomarsino S. et al., “Classification of cultural heritage assets and seismic damage variables for the identification of performance levels,” WIT Transactions on the Built Environment, vol. 118, pp. 697–708, Sep. 2011, doi: 10.2495/STR110581.
22. Lagomarsino S.; Cattari, S. “PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 13–47, Jan. 2015, doi: 10.1007/s10518-014-9674-1.
23. Malcata, M.; Ponte, M.; Tiberti, S.; Bento, R.; Milani, G. “Failure analysis of a Portuguese cultural heritage masterpiece: Bonet building in Sintra,” Eng Fail Anal, vol. 115, Sep. 2020, doi: 10.1016/J.ENGFAILANAL.2020.104636.
24. McKenna, F.; Fenves, G. L.; Scott, M. H. OpenSees: Open system for earthquake engineering simulation. Pacific Earthquake Engineering Research Center. Berkeley, CA: University of California, 2000. Accessed: Nov. 21, 2019. [Online]. Available: https://opensees.berkeley.edu/
25. Ozcelik, O.; Misir, I. S.; Yucel, U.; Durmazgezer, E.; Yucel, G.; Amaddeo, C. “Model updating of Masonry courtyard walls of the historical Isabey mosque using ambient vibration measurements,” Journal of Civil Structural Health Monitoring 2022, pp. 1–16, Jul. 2022, doi: 10.1007/S13349-022-00610-3.
26. Petracca, M.; Candeloro, F.; Camata, G. “‘STKO user manual’. ASDEA Software Technology,” Pescara, Italy, 2017. Accessed: Jul. 08, 2020. [Online]. Available: https://asdeasoft.net/pdf/STKOUserManual.pdf
27. Petracca, M.; Pelà, L.; Rossi, R.; Oller, S.; Camata, G.; Spacone, E. “Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls,” Comput Methods Appl Mech Eng, vol. 315, pp. 273–301, Mar. 2017, doi: 10.1016/j.cma.2016.10.046.
28. Petracca, M.; Pelà, L.; Rossi, R.; Zaghi, S.; Camata, G.; Spacone, E. “Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls,” Constr Build Mater, vol. 149, pp. 296–314, Sep. 2017, doi: 10.1016/j.conbuildmat.2017.05.130.
29. Requena-Garcia-Cruz, M. V.; Romero-Sánchez, E.; Morales-Esteban, A. “Numerical investigation of the contribution of the soil-structure interaction effects to the seismic performance and the losses of RC buildings,” Developments in the Built Environment, vol. 12, p. 100096, Dec. 2022, doi: 10.1016/j.dibe.2022.100096.
30. Requena-Garcia-Cruz, M. V.; Bento, R.; Durand-Neyra, P.; Morales-Esteban, A. “Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon,” Structures, vol. 38, pp. 599–617, Apr. 2022, doi: 10.1016/j.istruc.2022.02.024.
31. “Rhino - Rhinoceros 3D.” https://www.rhino3d.com/ (accessed Nov. 10, 2022).
32. Rossi, M.; Cattari, S.; Lagomarsino, S. “Performance-based assessment of the Great Mosque of Algiers,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 369–388, Jan. 2015, doi: 10.1007/s10518-014-9682-1.
33. Spanish Ministry of Public Works [Ministerio de Fomento de España], Update of the seismic hazard maps [Actualización de mapas de peligrosidad sísmica de España]. Spain, Spain, 2012.
34. Swiss Society of Engineers and Architects (SIA), SIA 266/2; SN 505266/2 (in German). Zürich, Switzerland, 2012. Accessed: Nov. 30, 2022. [Online]. Available: http://shop.sia.ch/normenwerk/ingenieur/266-2_2012_d/D/Product
35. Vuoto, A.; Ortega, J.; Lourenço, P. B.; Javier Suárez, F.; Claudia Núñez, A. “Safety assessment of the Torre de la Vela in la Alhambra, Granada, Spain: The role of on site works,” Eng Struct, vol. 264, Aug. 2022, doi: 10.1016/J.ENGSTRUCT.2022.114443.
36. Word Heritage Committee. United Nations Educational, “Inscription: The Mosque of Cordoba (Spain) (08COM IXA),” in Convention concerning the protection of the world cultural and natural heritage, 1984.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Autor / BY-NC

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Anales de Edificación does not charge authors for processing or publishing an article and provides immediate Open Access to its content. All content is available free of charge to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link to the full text of articles, or use them for any other lawful purpose, without prior permission from the publisher or author. This is in accordance with the BOAI definition of open access.
- Authors retain the copyright and grant to the journal the right to a Creative Commons attribution / Non-Commercial / Non-Derivative 4.0 International (CC BY NC ND) License that allows others to share the work with an acknowledgement of authorship and non-commercial use.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book).
Unless otherwise indicated, all contents of the electronic edition are distributed under a Creative Commons license.