Assessment of a methodology to evaluate constructive systems for industrialization: the case of dwellings in Spain.

Authors

  • Olga Sánchez Escuela Técnica Superior de Arquitectura de Madrid. Universidad Politécnica de Madrid
  • María del Mar Barbero-Barrera Escuela Técnica Superior de Arquitectura de Madrid. Universidad Politécnica de Madrid https://orcid.org/0000-0002-4605-3154

DOI:

https://doi.org/10.20868/ade.2024.5304

Keywords:

Fault detection and diagnosis; Thermal facilities; Machine learning; SCADA; R software.

Abstract

Building monitoring systems deliver large volumes of information and advanced data analysis tools are available. A fault detection and diagnosis (FDD) problem in building energy systems can also be regarded as a pure machine learning problem. The aim of this work is to promote FDD with machine learning applications in building environment. As a contribution, in this work raw time data series, obtained from a SCADA, are processed for further pattern construction of a building thermal facility. The thermal facility supplies the DHW, and heating demands of a residential building, consisting of 26 social dwelling units and located at Durango (northern Spain). Data recorded every 24 hours in cumulative values is included in the R software for computing statistical graphs. For DHW and heating consumption meter values, 229 valid data points are obtained, and the daily consumption ranges are between 1.94 - 5.90 m3 and 0 - 547.63 kWh respectively.

Downloads

Download data is not yet available.

References

AVELLANEDA, Jaume ; J.Mº GONZALEZ ; G. MARQUES; J.VIDAL (2009). “La innovación tecnológica desde la promoción de vivienda pública: el Concurso de Innovación Técnica INCASOL” Informes de la Construcción, 61, 513, 87-100.

AZPILICUETA, Enrique; ARAUJO, Ramón (2012) “El mito industrial”, Tectónica, 38, 4-19

CHEN, Ying; OKUDAN, Gül E.; RILEY, David R. (2010). “Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization”, Automation in construction, 19, 665-675.

Código Técnico de la Edificación (CTE) Documento Básico de Ahorro de Energía (DB-HE) (2019)

Código Técnico de la Edificación (CTE) Documento Básico de Protección Frente al Ruido (DB-HR) (2019)

Código Técnico de la Edificación (CTE) Documento Básico de Seguridad en caso de Incendio (DB-SI) (2019)

Comité Europeo de Normalización “Norma Europea UNE-EN 15804 Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción”

CRIBBS, John (2020). “Supporting a Model for Increased Labor Time Utilization When Engaging Building Information Modeling for Prefabrication”, Construction Research Congress, 841-850

DEL ÁGUILA GARCÍA, Alfonso (2006) [1987]. “La industrialización de la edificación de viviendas. Tomo 1: Sistemas. Tomo 2: Componentes.”, Madrid, Mairea libros

DU, Qiang; BAO, Tana; LI, Yi; HUANG, Youdan; SHAO, Long (2019). “Sustainable Impact of prefabrication technology on the cradle to site CO2 emissions of residential buildings”, Clean Technologies and Environmental Policy, 21, 1499–1514.

GALLO, Paola; ROMANO, Rosa; BELARDI, Elisa(2021). “Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies”, Sustainability 13, 4701, 1-31.

GÓMEZ JÁUREGUI, Valentín (2009) “Habidite: viviendas modulares industrializadas” ,REVISTA, 61, 513, 33-46 .

GROHE, Gred (2001) “El futuro de la construcción con madera”, Tectónica ,13, 28-37.

HONG, Jingke; QIPING Shen, Geoffrey; LI, Zhengdao; LI, Kaijian (2016). “Life-cycle energy analysis of prefabricated building components: an inputeoutput-based hybrid model”, Journal of Cleaner Production, 112, 2198-2207.

JIANG, Yongsheng; ZHAO, Dong; WANG, Dedong; XING, Yudong (2019). “Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study”, Sustainability, 11,5658, 1-15.

JURADO, José “Naturalidad del acero” (1998), Tectónica, 9, 18-25

LIA, Xiao; QIPING SHENB, Geoffrey; WUC, Peng; YUE, Teng (2018). “Searching for an optimal level of prefabrication in construction: An analytical framework”, Journal of Cleaner Production, 201, 236-245.

LIA, Xiao; QIPING SHENB, Geoffrey; WUC, Peng; YUE, Teng(2019). “Integrating Building Information Modeling and Prefabrication Housing Production”, Automation in Construction, 100, 46-60.

LUCAS, P.; SALAS,J.; BARRIONUEVO,R. (2012) “Cuarenta años del PERVI-LIMA: Algunas enseñanzas para la industrialización de la vivienda de bajo coste en Latinoamérica.”, Informes de la Construcción, 64, 525, 51-62.

MAO, Chao; XIE, Fangyun; HOU, Lei; WU, Peng; WANG, Jun; WANG, Xiangyu (2016). “Cost analysis for sustainable off-site construction based on a multiplecase study in China”, Habitat international, 57, 215-222.

MONTES, J.; CAPS, I.P.; FUSTER, A. (2011). “Industrialización en la vivienda social de Madrid”, Informes de la Construcción, 63, 522, 5-19.

MORADIBISTOUNI, Milad; VALE, Brenda; ISAACS, Nigel (2018). “Evaluating sustainability of prefabrication methods in comparison with traditional methods” Sustainability in Energy and Buildings: páginas 228-237.

PASSIVHAUS INSTITUT (2016) “Criterios y algoritmos para componentes certificados passivhaus: sistemas constructivos opacos” https://passiv.de/downloads/03_certification_criteria_componentes_opacos_ES.pdf

PÉREZ ARROYO, Salvador (2009). “Industrializar” Informes de la construcción, 61, 513, 5-10.

REYES, J.Miguel (2018) “3D-bonding vocabulary (building systems with 3D-components)”, Anales de Edificación, 4, 4, 42-54.

SAIZ SÁNCHEZ, Pablo (2015). “La casa industrializada. Seis propuestas para este milenio.” Tesis doctoral. Escuela Técnica Superior de Arquitectura. Universidad Politécnica de Madrid. http://oa.upm.es/40341/

SAIZ, Francisco (2019) “Encuentro sobre madera y construcción. Industria de la madera” Instituto Torroja TV https://www.youtube.com/watch?v=xB1mnyVXoT8&t=2s

SALAS, Julián (2009) “Por la industrialización de la vivienda aquí y ahora”, Ciudad y territorio, XLI, 161, 629-644.

SALAS, Julián; BLÁZQUEZ, A.; et al. (2013) “Los documentos de idoneidad técnica como potenciales incentivadores de la industrialización de la construcción”, Informes de la Construcción, 65, 531, 275- 288.

SARAIVA FREITAS, Iuri Abreu; ZHANG, Xingxing (2018).

“Green building rating systems in Swedish market- A comparative analysis between LEED, BREEAM SE, GreenBuilding and Miljöbyggnad” Energy Procedia, 153, 402-407.

TECTÓNICA (2001) “La revolución de la madera”, Tectónica, 13,1.

TENG, Yue; LI, Kaijian; PAN, Wen; NG, Thomas (2018) ”Reducing building life cycle carbon emissions through prefabrication: Evidence from and gaps in empirical studies”, Building and Environment, 132,125-136.

WAKED, Ingy; VAN BALEN, Koenraad (2019). “Knowledge and Skills associated to Craftsmanship for Built Heritage Conservation and Rehabilitation: Case Study - Historic Cairo”, Professionalism in the Built Heritage Sector, 109-116.

Downloads

Published

2024-03-31

How to Cite

Assessment of a methodology to evaluate constructive systems for industrialization: the case of dwellings in Spain. (2024). Anales De Edificación, 9(1), 1-14. https://doi.org/10.20868/ade.2024.5304

Most read articles by the same author(s)