Assessment of a methodology to evaluate constructive systems for industrialization: the case of dwellings in Spain.
DOI:
https://doi.org/10.20868/ade.2024.5304Keywords:
Fault detection and diagnosis; Thermal facilities; Machine learning; SCADA; R software.Abstract
Building monitoring systems deliver large volumes of information and advanced data analysis tools are available. A fault detection and diagnosis (FDD) problem in building energy systems can also be regarded as a pure machine learning problem. The aim of this work is to promote FDD with machine learning applications in building environment. As a contribution, in this work raw time data series, obtained from a SCADA, are processed for further pattern construction of a building thermal facility. The thermal facility supplies the DHW, and heating demands of a residential building, consisting of 26 social dwelling units and located at Durango (northern Spain). Data recorded every 24 hours in cumulative values is included in the R software for computing statistical graphs. For DHW and heating consumption meter values, 229 valid data points are obtained, and the daily consumption ranges are between 1.94 - 5.90 m3 and 0 - 547.63 kWh respectively.
Downloads
References
AVELLANEDA, Jaume ; J.Mº GONZALEZ ; G. MARQUES; J.VIDAL (2009). “La innovación tecnológica desde la promoción de vivienda pública: el Concurso de Innovación Técnica INCASOL” Informes de la Construcción, 61, 513, 87-100.
AZPILICUETA, Enrique; ARAUJO, Ramón (2012) “El mito industrial”, Tectónica, 38, 4-19
CHEN, Ying; OKUDAN, Gül E.; RILEY, David R. (2010). “Decision support for construction method selection in concrete buildings: Prefabrication adoption and optimization”, Automation in construction, 19, 665-675.
Código Técnico de la Edificación (CTE) Documento Básico de Ahorro de Energía (DB-HE) (2019)
Código Técnico de la Edificación (CTE) Documento Básico de Protección Frente al Ruido (DB-HR) (2019)
Código Técnico de la Edificación (CTE) Documento Básico de Seguridad en caso de Incendio (DB-SI) (2019)
Comité Europeo de Normalización “Norma Europea UNE-EN 15804 Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción”
CRIBBS, John (2020). “Supporting a Model for Increased Labor Time Utilization When Engaging Building Information Modeling for Prefabrication”, Construction Research Congress, 841-850
DEL ÁGUILA GARCÍA, Alfonso (2006) [1987]. “La industrialización de la edificación de viviendas. Tomo 1: Sistemas. Tomo 2: Componentes.”, Madrid, Mairea libros
DU, Qiang; BAO, Tana; LI, Yi; HUANG, Youdan; SHAO, Long (2019). “Sustainable Impact of prefabrication technology on the cradle to site CO2 emissions of residential buildings”, Clean Technologies and Environmental Policy, 21, 1499–1514.
GALLO, Paola; ROMANO, Rosa; BELARDI, Elisa(2021). “Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies”, Sustainability 13, 4701, 1-31.
GÓMEZ JÁUREGUI, Valentín (2009) “Habidite: viviendas modulares industrializadas” ,REVISTA, 61, 513, 33-46 .
GROHE, Gred (2001) “El futuro de la construcción con madera”, Tectónica ,13, 28-37.
HONG, Jingke; QIPING Shen, Geoffrey; LI, Zhengdao; LI, Kaijian (2016). “Life-cycle energy analysis of prefabricated building components: an inputeoutput-based hybrid model”, Journal of Cleaner Production, 112, 2198-2207.
JIANG, Yongsheng; ZHAO, Dong; WANG, Dedong; XING, Yudong (2019). “Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study”, Sustainability, 11,5658, 1-15.
JURADO, José “Naturalidad del acero” (1998), Tectónica, 9, 18-25
LIA, Xiao; QIPING SHENB, Geoffrey; WUC, Peng; YUE, Teng (2018). “Searching for an optimal level of prefabrication in construction: An analytical framework”, Journal of Cleaner Production, 201, 236-245.
LIA, Xiao; QIPING SHENB, Geoffrey; WUC, Peng; YUE, Teng(2019). “Integrating Building Information Modeling and Prefabrication Housing Production”, Automation in Construction, 100, 46-60.
LUCAS, P.; SALAS,J.; BARRIONUEVO,R. (2012) “Cuarenta años del PERVI-LIMA: Algunas enseñanzas para la industrialización de la vivienda de bajo coste en Latinoamérica.”, Informes de la Construcción, 64, 525, 51-62.
MAO, Chao; XIE, Fangyun; HOU, Lei; WU, Peng; WANG, Jun; WANG, Xiangyu (2016). “Cost analysis for sustainable off-site construction based on a multiplecase study in China”, Habitat international, 57, 215-222.
MONTES, J.; CAPS, I.P.; FUSTER, A. (2011). “Industrialización en la vivienda social de Madrid”, Informes de la Construcción, 63, 522, 5-19.
MORADIBISTOUNI, Milad; VALE, Brenda; ISAACS, Nigel (2018). “Evaluating sustainability of prefabrication methods in comparison with traditional methods” Sustainability in Energy and Buildings: páginas 228-237.
PASSIVHAUS INSTITUT (2016) “Criterios y algoritmos para componentes certificados passivhaus: sistemas constructivos opacos” https://passiv.de/downloads/03_certification_criteria_componentes_opacos_ES.pdf
PÉREZ ARROYO, Salvador (2009). “Industrializar” Informes de la construcción, 61, 513, 5-10.
REYES, J.Miguel (2018) “3D-bonding vocabulary (building systems with 3D-components)”, Anales de Edificación, 4, 4, 42-54.
SAIZ SÁNCHEZ, Pablo (2015). “La casa industrializada. Seis propuestas para este milenio.” Tesis doctoral. Escuela Técnica Superior de Arquitectura. Universidad Politécnica de Madrid. http://oa.upm.es/40341/
SAIZ, Francisco (2019) “Encuentro sobre madera y construcción. Industria de la madera” Instituto Torroja TV https://www.youtube.com/watch?v=xB1mnyVXoT8&t=2s
SALAS, Julián (2009) “Por la industrialización de la vivienda aquí y ahora”, Ciudad y territorio, XLI, 161, 629-644.
SALAS, Julián; BLÁZQUEZ, A.; et al. (2013) “Los documentos de idoneidad técnica como potenciales incentivadores de la industrialización de la construcción”, Informes de la Construcción, 65, 531, 275- 288.
SARAIVA FREITAS, Iuri Abreu; ZHANG, Xingxing (2018).
“Green building rating systems in Swedish market- A comparative analysis between LEED, BREEAM SE, GreenBuilding and Miljöbyggnad” Energy Procedia, 153, 402-407.
TECTÓNICA (2001) “La revolución de la madera”, Tectónica, 13,1.
TENG, Yue; LI, Kaijian; PAN, Wen; NG, Thomas (2018) ”Reducing building life cycle carbon emissions through prefabrication: Evidence from and gaps in empirical studies”, Building and Environment, 132,125-136.
WAKED, Ingy; VAN BALEN, Koenraad (2019). “Knowledge and Skills associated to Craftsmanship for Built Heritage Conservation and Rehabilitation: Case Study - Historic Cairo”, Professionalism in the Built Heritage Sector, 109-116.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Autor / BY-NC
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Anales de Edificación does not charge authors for processing or publishing an article and provides immediate Open Access to its content. All content is available free of charge to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link to the full text of articles, or use them for any other lawful purpose, without prior permission from the publisher or author. This is in accordance with the BOAI definition of open access.
- Authors retain the copyright and grant to the journal the right to a Creative Commons attribution / Non-Commercial / Non-Derivative 4.0 International (CC BY NC ND) License that allows others to share the work with an acknowledgement of authorship and non-commercial use.
- Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book).
Unless otherwise indicated, all contents of the electronic edition are distributed under a Creative Commons license.