Modelo CFD con validación de campo para el estudio de los alcances de efectividad de técnicas de mitigación de radón por despresurización = CFD model with field validation for the study of the effectiveness of radon mitigation techniques by depressurisation

Autores/as

  • Isabel Sicilia Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Borja Frutos Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Carmen Alonso Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Fernando Martín-Consuegra Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Fernando de-Frutos Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Ignacio Oteiza Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones Científicas
  • Carlos Sainz Universidad de Cantabria
  • Luis S. Quindós Universidad de Cantabria

DOI:

https://doi.org/10.20868/ade.2022.5098

Palabras clave:

Radón, Mitigación, Modelo CFD, Eficacia, Despresurización, Radon, Mitigation, CFD model, Effectiveness, Depressurisation

Resumen

La reducción de niveles de gas radón en el interior de edificios supone un desafío debido a las diferentes características de terrenos y sistemas constructivos, especialmente en edificios ya construidos. El artículo presenta los avances en el desarrollo de un modelo de simulación en COMSOL Multiphysics para el estudio de movimientos de gas radón bajo solera. En primer lugar, se estudian los parámetros que afectan a los movimientos del gas, como las características de materiales, terreno, sistemas constructivos y potencia de extracción. Posteriormente, partiendo de una base experimental previa, se calibra un modelo simplificado de forma que se puedan aproximar los resultados del modelo de simulación a los recabados en el modelo real. El presente trabajo se enmarca en el proyecto Radon_Flow (PID2019-109898RB-I00) desarrollado en el Instituto Eduardo Torroja, perteneciente al Consejo Superior de Investigaciones Científicas de España.

Abstract

Reducing radon gas levels inside buildings is a challenge due to the different characteristics of soils and construction systems, especially in existing buildings. The paper presents the progress in the development of a simulation model in COMSOL Multiphysics for the study of radon gas movements under screed. Firstly, the parameters that affect gas movements, such as the characteristics of materials, soil, construction systems and extraction power, are studied. Subsequently, starting from a previous experimental basis, a simplified model is calibrated so that the results of the simulation model can be approximated to those obtained in the real model. This work is part of the Radon_Flow project (PID2019-109898RB-I00) developed at the Eduardo Torroja Institute, belonging to the Spanish National Research Council (CSIC).

Descargas

Los datos de descarga aún no están disponibles.

Referencias

G. Cinelli, M. De Cort, T. Tollefsen, M. Achatz, J. Ajtić, C. Ballabio, I. Barnet, F. Bochicchio, P. Borelli, P. Bossew, R. Braga, E. Brattich, A. Briganti, C. Carpentieri, C. Castellani, M. Castelluccio, E. Chiaberto, G. Ciotoli, C. Coletti, A. Cucchi, Z. Daraktchieva, C. Di Carlo, J. De France, B. Dehandschutter, F. Domingos, T. Dudar, J. Elio, P. Falletti, A. Ferreira, I.E. Finne, C. Fontana, I. Fuente Merino, G. Galli, M. Garcia-Talavera, O. German, C. Grossi, V. Gruber, J. Gutierrez-Villanueva, M. Hansen, M.A. Hernandez Ceballos, M. Hoffmann, S. Hurst, G. Iurlaro, K. Ivanova, V. Jobbagy, A. Jones, G. Kovalenko, K. Kozak, R. Lawley, R. Lehné, B. Lister, S. Long, C. Lucchetti, M. Magnoni, M. Matolin, J. Mazur, C. Mazzoli, J. Mclaughlin, M. Mollo, D. Mostacci, S. Mundigl, D. Nesbor, L. Neves, M. Neznal, J. Nikolov, P. Nilsson, A. Nogarotto, A. Onischenko, A. Orgiazzi, P. Pacherová, P.Panagos, A. Pereira, M.D.R. Perez, V. Pokalyuk, D. Pressyanov, L.S. Quindós Poncela, W. Ringer, F. Rossi, M. Sangiorgi, R. Sassi, Z. Simic, P. Smedley, S. Socciarelli, M. Soligo, S. Stoulos, K. Szabo, K. Täht-Kok, N. Todorović, R. Tolton, P. Tuccimei, T. Turtiainen, A. Tye, V. Udovicic, A. Vasilyev, G. Venoso, S. Verdelocco, V. Verkhovtsev, M. Voltaggio, O. Zhukova, M. Zhukovsky, European atlas of Natural radiation, 2019. https://doi.org/10.2760/46388.

W.E. Clements, M.H. Wilkening, Atmospheric pressure effects on 222Rn transport across the Earthair interface, 1974. https://doi.org/10.1029/JC079i033p05025.

R. Manual, COMSOL Multiphysics® v. 5.5 Reference Manual, (2018) 1742.

EURATOM, Unión Europea, DIRECTIVA 2013/59/EURATOM del Consejo de 5 de diciembre de 2013, por la que se establecen normas de seguridad básicas para la proteccion contra los peligros derivados de la exposicion a radiaciones ionizantes., D. Of. La Unión Eur. (2014) W.W. Nazaroff, B.A. Moed, R.G. Sextro, Soil as a Source of Indoor Radon, Generation, Migration, and Entry, Radon Its Decay Prod. Indoor W.W. Nazaroff, A.V. Nero Jr. (1988) 57–112.

M. de Fomento, CTE. Sección DB HS-6. Protección frente a la exposición al radón, in: Código Técnico La Edif., España, 2019: pp. 1–49.

B. Frutos, M. Olaya, J.L. Esteban, Sistemas de extracción como técnicas constructivas para evitar la entrada de gas radón en las viviendas, Inf. La Construcción. 63 (2011) 23–36.

B. Frutos, I. Sicilia, O. Campo, S. Aparicio, M. Gonz, R. Daniel, M. González, J.J. Anaya, D. Rábago, C. Sainz, A full-scale experimental study of sub-slab pressure fields induced by underground perforated pipes as a soil depressurisation technique in radon mitigation, J. Environ. Radioact. 225 (2020) 106420. https://doi.org/10.1016/j.jenvrad.2020.106420.

M. Fuente, E. Muñoz, I. Sicilia, J. Goggins, L.C. Hung, B. Frutos, M. Foley, Investigation of gas flow through soils and granular fill materials for the optimisation of radon soil depressurisation systems, J. Environ. Radioact. 198 (2019) 200–209. https://doi.org/10.1016/j.jenvrad.2018.12.024.M. Jiranek, Z. Svoboda, Numerical modelling as a tool for optimisation of sub-slab depressurisation systems design, Build. Environ. 42 (2007) 1994–2003. https://doi.org/10.1016/j.buildenv.2006.04.002.

Health Canada, Reducing Radon Levels in Existing Homes. A Canadian Guide for Professional Contractors, (2010) 70.

F. Pacheco-Torgal, Indoor radon: An overview on a perennial problem, Build. Environ. 58 (2012) 270–277. https://doi.org/10.1016/j.buildenv.2012.08.004.

L. Quindós-Poncela, Radon: Un gas radioactivo de Origen Natural en su Casa, Universida, Santander, 1995.

Sicilia, Isabel; Frutos, Borja; Sáinz, Carlos; Quindós, Luis, Alonso, Carmen; Martín-Consuegra, Fernando; de Frutos, Fernando; Pérez, Gloria; Oteiza, Study of porous layers for the stablishment of design parameters applied to depressurization techniques for radon mitigation, CEES 2021- Int. Conf. Constr. Energy, Environ. Sustain. (2021) 31. https://epic.awi.de/32157/2/Book_of_Abstracts_ART_APECS.pdf.

Sicilia, S. Aparicio, B. Frutos, E. Muñoz, M. González, J.J. Anaya, A Multisensor System for the Characterization of the Field Pressure in Terrain. Accuracy, Response, and Adjustments, Sensors. 19 (2019) 3942. https://doi.org/10.3390/s19183942.

WHO, Who Handbook on Indoor Radon - A Public Health Perspective, World Heal. Organ. (2009) 110 p. https://doi.org/10.1080/00207230903556771.

L13/1-73. http://www.boe.es/doue/2014/013/L00001-00073.pdf.

Descargas

Publicado

2022-12-30

Cómo citar

Modelo CFD con validación de campo para el estudio de los alcances de efectividad de técnicas de mitigación de radón por despresurización = CFD model with field validation for the study of the effectiveness of radon mitigation techniques by depressurisation. (2022). Anales De Edificación, 8(3), 47-53. https://doi.org/10.20868/ade.2022.5098