Análisis acústico del uso de neumáticos reciclados en vías férreas = Acoustic analysis of the use of recycled tires on railways.

Catalina Mondragón-Enguídanos, Amparo Verdú-Vázquez, Tomás Gil López, Jorge Gómez-Hoyos


doi:10.20868/ade.2021.4586

Abstract


La presente investigación consiste en el desarrollo de un novedoso material elastomérico fabricado a partir del reciclado de neumáticos. Este material se emplea como atenuador de vibraciones en sistemas comúnmente usados en las líneas férreas. Una vez definida la rigidez estática del sistema y caracterizados los componentes elásticos del conjunto, se fabricaron cuatro prototipos a escala real para validar su comportamiento acústico. Tras los ensayos realizados, se observa que este material sufre un proceso de flexibilización, en lugar del habitual proceso de rigidización en cauchos sintéticos, debido a los efectos derivados de la fatiga. Los resultados numéricos confirman la viabilidad de este nuevo eco-material para su uso como atenuador de vibraciones en líneas ferroviarias.

Abstract

This research consists of the development of a novel elastomeric material manufactured from tyre recycling. This material is used as a vibration attenuator in systems commonly used in railway lines. Once the static rigidity of the system was defined and elastic componennts of the assembly were characterized, four full-scale prototypes were manufactured for validate their acoustic behavior. After tests carried out, it is observed that this material undergoes a process of flexibility, instead of the usual stiffening process in synthetic rubbers, due to the fatigue-derived effects. The numerical results confirm the feasibility of this new eco-material for use as a vibration attenuator on railway lines.

 


Keywords


Neumático reciclado; análisis acústico; elastómero; vibración; validaciones; Recycled tires; acustic analysis; elastomer; vibration; validations

References


Diego, S.; Casado, J.A.; Carrascal, I.A.; Polanco, J.A.; Gutiérrez-Solana, F. (2010) “Experimental Validation of an Adjustable Railway Fastening for Slab Track,” J Test Eval 38 no. 5 (September 2010): 598-608, https://doi.org/10.1520/JTE102763.

Diego, S.; Casado, J.A.; Carrascal, I.; Ferreño, D.; Cardona, J.; Arcos, R. (2017). “Numerical and experimental characterization of the mechanical behavior of a new recycled elastomer for vibration isolation in railway applications”. Construction and Building Materials 134 18-31.https://doi.org/10.1016/j.conbuildmat.2016.12.115.

European (2008). European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off J Eur Union. 2008:3-30. doi:2008/98/EC.;32008L0098, https://perma.cc/L28E-BK3L.

Fabricación (2005). Fabricación y homologación de vía en placa con tacos prefabricados embebidos en elastómero, MMEV-1-2-01 (2005) (Metro de Madrid, 2005).

Fonseca, P. (2003) “Contribución a la reducción de los costes de mantenimiento de vías de alta velocidad mediante la optimización de su rigidez vertical” (PhD. Thesis, Universitat Politècnica de Catalunya, 2003).

Gómez, J.; Casado, J.; Carrasco, I.; Diego, S.; Ferreño, D.; Mondragon, C. (2019) “Experimental validation of a new anti-vibration elastomeric material from end-of-life tires for slab track systems with embedded rail”. Journal of Testing and Evaluation 49 (April 2019). https://doi.org/10.1520/JTE20180804.

Gonzalez, F.J.; Fuentes, J. (2019). “Sistemas ferroviarios: planificación, ingeniería y explotación”. Editorial Universidad Nacional de Educación a Distancia (marzo 2019).

Hussein, M.F.M; Hunt, H.E.M. (2003). “An insertion loss model for evaluating the performance of floating-slab track for underground railway tunnels”. Tenth international Congress of sound and vibration. 7-10 July 2003.

ISO (2008). Laboratory measurement of vibro-acoustic transfer properties of resilient elements, ISO 10846-1(2008) (Geneva, Switzerland: International Organization for Standardization, 2008).

Liu, Y.; Luo, Y.; Yin, H.P. (2014). “Experimental and numerical analysis of nonlinear properties of rail fastening systems”. International conference of computational methods in sciences and engineering 2014 (October 2014). https://doi.org/10.1063/1.4897668.

Pajak, M.; Janiszewski, J.; Kruska, L. (2019). “Laboratory investigation of the influence of high compressive strain rates on the hybrid fibre reinforced self-compacting concrete”. Construction and Building Materials 227. https://doi.org/10.1016/j.conbuildmat.2019.116687.

Sol-Sanchez, M.; Moreno-Navarro, F.; Saiz, L.; Rubio-Gamez, M.C. (2020). “Recycling waste rubber particles for the maintenance of different states of railway tracks through a two-step stoneblowing process”. Journal of Cleaner Production 244. (January 2020). https://doi.org/10.1016/j.jclepro.2019.118570.

UNE (2002a). UNE-EN 13146-5. Railway applications – Track – Test method for fastening systems. Part 5: Determination of the electrical resistance.

UNE (2002b). UNE-EN 13146-4. Railway applications – Track – Test method for fastening systems. Part 4: Effect of repeated loading. 2002.

Zbiciak, A.; Kraskiewicz, C.; Oleksiewicz, W.; Pludowska-Zagrajek, M,; Lipko, C. (2017). “Mechanical Modelling and application of vibroacoustic isolators in railway tracks”. MATEC Web of Conferences 117. Theoretical Foundation of Civil Engineering. XXVI R-S-P Seminar 2017. https://doi.org/10.1051/matecconf/20171170009.




Copyright (c) 2022 Autor / BY-NC

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.