Propiedades térmicas e hídricas de materiales aislantes apropiadas para fábricas históricas = Thermal and hygric properties of insulation materials suitable for historic fabrics

Autores/as

  • Rosanne Walker Universty of Dublin, Trinity College
  • Sara Pavía Universty of Dublin, Trinity College

DOI:

https://doi.org/10.20868/ade.2016.3305

Palabras clave:

Aislamiento, conductividad térmica, capacidad calorífica específica, difusividad, masa térmica, permeabilidad al vapor de agua, capilaridad, humedad de referencia, porosidad abierta, nanoporosidad, Insulation, thermal conductivity, specific heat capacity

Resumen

Resumen

Mejorar el rendimiento térmico de los edificios mediante la adaptación del aislamiento puede reducir la pérdida innecesaria de calor y energía minimizando el impacto ambiental. El aislamiento térmico interior es a menudo el elegido en los edificios históricos para preservar sus características. Sin embargo, el aislamiento interior puede aumentar la acumulación de humedad en paredes que socavan su durabilidad. Hay una falta de conocimiento sobre la eficacia de sólidos muros históricos y el impacto del aislamiento interno en su comportamiento higrotérmico. Este artículo investiga las propiedades térmicas e hídricas de siete opciones de aislamiento internos, incluyendo la pintura térmica, aerogel (AG), corcho-cal (CL), cal-cáñamo (HL), silicato de calcio bordo (CSB), tablero de fibra de madera (TFB) y placa de polisocianurato (PIR). Sus propiedades se comparan con un enlucido de cal tradicional. El PIR y el aerogel AG muestran extraordinarias propiedades térmicas que contribuyen a la comodidad y ahorro de energía, y la CL y HL son permeables al vapor y a la capilaridad. Estos tienen aproximadamente el doble de la masa térmica de los otros aislantes. Además, la CL tiene una buena inercia térmica (segunda difusividad más baja) y, a pesar de su contenido orgánico, una adsorción de baja a alta RH.

Abstract

Improving the thermal performance of buildings by retrofitting insulation can reduce unnecessary heat loss and building operational energy minimising environmental impact. Internal thermal insulation is often favoured for historic buildings to preserve their features. However, internal insulation may increase moisture accumulation in walls undermining their durability. There is a lack of knowledge on the performance of historic solid walls and the impact of internal insulation in their hygrothermal behaviour. This paper investigates the thermal and hygric properties of seven internal insulation options including thermal paint, aerogel (AG), cork lime (CL), hemp lime (HL), calcium silicate board (CSB), timber fibre board (TFB) and polyisocyanurate (PIR) board. Their properties are compared with a traditional lime plaster. The PIR and aerogel AG show outstanding thermal properties that contribute towards indoor thermal comfort and energy savings and the CL and HL are vapour permeable and capillary active. They have approximately double the thermal mass of the other insulations. In addition, the CL has a good thermal inertia (2nd lowest diffusivity) and, in spite of its organic content, a low adsorption at high RH.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Azemati AA, Hadavand BS, Hosseini H, Tajarrod AS. (2013). Thermal modeling of mineral insulator in paints for energy saving. Energy and Buildings 56, 109–114. http://dx.doi.org/10.1016/j.enbuild.2012.09.036

Benavente D. (2011). Why Pore Size Is Important in the Deterioration of Porous Stones Used in the Built Heritage. Revista de la sociedad española de mineralogía 15.

BPIE (2011). Europe’s buildings underthe microscope. A country-by-country review of the energyperformance of buildings. Buildings Performance Institute Europe (BPIE).

Brás A, Goncalvesa F, Faustinoa P. (2014). Cork-based mortars for thermal bridges correction in a dwelling:Thermal performance and cost evaluation. Energy and Buildings 72, 296–308. http://dx.doi.org/10.1016/j.enbuild.2013.12.022

Browne D. (2012). The SPAB Hygrothermal Modelling.: Interim Report. The SPAB Research Report 3, London; October 2012.

BS (2007). En ISO 10456:2007. Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design thermal value.

Černý R, Kunca A, Tydlitát V, Drchalová J, Rovnaníková P. (2006). Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Construction and Building Materials 20(10), 849-857. http://dx.doi.org/10.1016/j.conbuildmat.2005.07.002

Cuce E, Cuce PM, Wood CJ, Riffat SB. (2014). Toward aerogel based thermal super insulation in buildings: A comprehensive review . Renewable and Sustainable Energy Reviews 34, 273–299. http://dx.doi.org/10.1016/j.rser.2014.03.017

Daly P, Ronchetti P, Woolley T. (2012). Hemp Lime Bio-composite as a Construction Material. Built Environmental Sustainable Research & Consultancy Report. Environmental Protection Agency, Ireland.

EN 12086:1997. Thermal insulating products for building applications. Determination of water vapour transmission properties.

EN 1925:1999. Natural stone test methods. Determination of water absorption coefficient by capillarity.

Evrard A. (2008). Transient hygothermal behaviour of lime-hemp material. PhD thesis, Universite catholique de Louvain, Belgium.

Hansen KK. (1986). Sorption Isotherms: A catalogue. Technical Report 162/86, Building Materials Laboratory The Technical University of Denmark.

ISO 12571:2013. Hygrothermal performance of building materials and products -- Determination of hygroscopic sorption properties.

Karamanis D. (2015). Solar cooling with hydrophilic porous materials for reducing building cooling needs. In: Eco-efficient Materials for Mitigating Building Cooling Needs- Design, Properties and Applications. Ed. by Fernando Pacheco-Torgal, JoãoLabrincha, Luisa Cabeza, Claes Goeran Granqvist , 1st Edition. http://dx.doi.org/10.1016/B978-1-78242-380-5.00010-8

Klõšeiko P, Arumägi E, Kalamees T. (2015). Hygrothermal performance of internally insulated brick wall in cold climate: field measurement and model calibration. Journal of Building Physics 38(5), 444-464. http://dx.doi.org/10.1177/1744259114532609

Krus M. (1996). Moisture Transport and Storage Coefficents of Porous Mineral Building Material. PhD thesis, Fraunhofer-Institut fur Bauphysik, Holzkirchen, Germany.

Künzel, H.M. (1995). Simultaneous Heat and Moisture Transfer in Building Components: One- and Two dimensional calculation using simple parameters, Ph.D. Thesis, University of Stuttgart, Germany.

Künzel HM, Holm AH (2009). Moisture Control and Problem Analysis of Heritage Constructions, IBP, Fraunhofer Institute, Stuttgart.

Nielsen A, Møller EB, Rasmussen TV, Hansen EJdP. (2012). Use of sensitivity analysis to evaluate hygrothermal conditions in solid brick walls with interior insulation Proceedings of the 5th International Building Physics Conference (IBPC).

Pavlik Z, Cerny R. (2009). Hygrothermal performance study of an innovative interior thermal insulation system. Applied Thermal Engineering; 29:1941–1946. http://dx.doi.org/10.1016/j.applthermaleng.2008.09.013

Petrie M, Childs P. (1998). Radiation control coating installed on Federal Building at Tyndall Air Force Base, Volume 2, Long term Monitoring and Modelling. Oak Ridge National Laboratory prepared for the US Department of Energy.

Rhee-Duverne S, Baker P. (2013). Research Into The Thermal Performance Of Traditional Brick Walls. English Heritage Report, London.

Sheikhzadeh GA, Azemati AA, Khorasanizadeh H, Shirkavand Hadavand B, Saraeic A. (2014). The effect of mineral micro particle in coating on energy consumption reduction and thermal comfort in a room with a radiation cooling panel in different climates. Energy and Buildings 82, 644–650. http://dx.doi.org/10.1016/j.enbuild.2014.07.043

Shen H, Tan H, Tzempelikos A. (2011). The effect of reflective coatings on building surface temperatures indoor environment and energy consumption—An experimental study. Energy and Buildings 43, 573–580. http://dx.doi.org/10.1016/j.enbuild.2010.10.024

Stefanidou M, Assael M, Antoniadis K, Matziaroglou G. (2010). Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures. International Journal of Thermophysics 31, 844-851. http://dx.doi.org/10.1007/s10765-010-0750-8

Straube J. (2009). Field Monitoring and Hygrothermal Modeling of Interior Basement Insulation Systems. Research Report – 0906, Building Science Press.

Toman J, Vimmrova A, Cerny R. (2009). Long-term on-site assessment of hygrothermal performance of interior thermal insulation system without water vapour barrier. Energy and Buildings 41, 51–55. http://dx.doi.org/10.1016/j.enbuild.2008.07.007

Tran Le A. (2011). Etude des transferts hygrothermique dans le beton de chanvre et leur application au batiments. PhD thesis, de l’Université de Reims Champagne-Ardenne, France.

Vejmelková E, Keppert M, Keršner Z, Rovnaníková P, Černý R. (2012). Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime–metakaolin plasters for renovation of historical buildings. Construction and Building Materials 31, 22-28. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.084

Vololonirina O, Coutand M, Perrin B. (2014). Characterization of hygrothermal properties of wood-based products– Impact of moisture content and temperature. Construction and Building Materials 63, 223–233. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.014

Descargas

Publicado

2016-08-31

Número

Sección

Artículos

Cómo citar

Propiedades térmicas e hídricas de materiales aislantes apropiadas para fábricas históricas = Thermal and hygric properties of insulation materials suitable for historic fabrics. (2016). Anales De Edificación, 2(2), 1-9. https://doi.org/10.20868/ade.2016.3305