Aplicación del método de los elementos finitos para el análisis del comportamiento sísmico de la mezquita-catedral de Córdoba
DOI:
https://doi.org/10.20868/ade.2024.5364Palabras clave:
Método de los elementos finitos, Edificios históricos, Comportamiento sísmico, Pushover, Patrimonio culturalResumen
El objetivo principal de este trabajo es aplicar el método de los elementos finitos para el modelado del sector de Abd’ al-Rahman I de la Mezquita-Catedral de Córdoba. Este edificio es de un gran valor cultural y patrimonial. Por ello, fue declarado Patrimonio de la Humanidad por la UNESCO en 1984. El monumento se encuentra al sur de la península ibérica. Este área se caracteriza por una actividad sísmica moderada. Debido a ello, de cara a su preservación y al análisis de su seguridad, es importante analizar su comportamientos estructural y sísmico. En este trabajo, se ha desarrollado un modelo en 3D en el software abierto OpenSees. Para ello, se han realizado ensayos no destructivos sobre el edificio. Para el análisis de su comportamiento, se han realizado análisis estáticos verticales y horizontales (tipo pushover). Como resultado, se ha obtenido que el edificio presenta un peor comportamiento sísmico en la dirección perpendicular a las arcadas
Descargas
Referencias
1. Altunişik, A. C.; Sunca, F.; Genç, A.F.; Tavşan, C. “Post-Earthquake Damage Assessments of Historic Mosques and Effects of Near-Fault and Far-Fault Ground Motions on Seismic Responses,” International Journal of Architectural Heritage, pp. 1–36, Dec. 2021, doi: 10.1080/15583058.2021.2011475.
2. Amaro-Mellado, J. L.; Morales-Esteban, A.; Asencio-Cortés, G.; Martínez-Álvarez, F. “Comparing seismic parameters for different source zone models in the Iberian Peninsula,” Tectonophysics, Oct. 2017, doi: 10.1016/j.tecto.2017.08.032.
3. Amaro-Mellado, J. L.; Morales-Esteban, A.; Martínez-Álvarez, F., “Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system,” Cent Eur J Oper Res, 2017, doi: 10.1007/s10100-017-0506-7.
4. Asteris, P. G.; Cotsovos, D. M.; Chrysostomou, C. Z.; Mohebkhah, A.; Al-Chaar, G. K. “Mathematical micromodeling of infilled frames: State of the art,” Eng Struct, vol. 56, pp. 1905–1921, Nov. 2013, doi: 10.1016/j.engstruct.2013.08.010.
5. Cattari S. et al., Nonlinear modeling of the seismic response of 21 masonry structures: critical review and open issues towards engineering practice, no. 0123456789. Springer Netherlands, 2021. doi: 10.1007/s10518-021-01263-1.
6. Cattari, S.; Camilletti, D.; D’Altri, A. M.; Lagomarsino, S. “On the use of continuum Finite Element and Equivalent Frame models for the seismic assessment of masonry walls,” Journal of Building Engineering, vol. 43, no. January, p. 102519, 2021, doi: 10.1016/j.jobe.2021.102519.
7. Cattari S.; Magenes, G. “Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1901–1936, Mar. 2022, doi: 10.1007/S10518-021-01078-0.
8. Cattari S.; Magenes, G. “Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1901–1936, Mar. 2022, doi: 10.1007/s10518-021-01078-0.
9. Cosgun, T.; Akan, A. E.; Uzdil, O.; Örmecioğlu, A. Er, H. T.; Sayin, B. “Post-restoration seismic performance assessment of a historic hypostyle mosque in Anatolia (13th century AD),” Case Studies in Construction Materials, p. e01849, Jan. 2023, doi: 10.1016/j.cscm.2023.e01849.
10. D’Altri A. M. et al., “Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification,” Archives of Computational Methods in Engineering, vol. 27, no. 4, pp. 1153–1185, 2020, doi: 10.1007/s11831-019-09351-x.
11. D’Altri, A. M.; Cannizzaro, F.; Petracca, M.; Talledo, D. A. “Nonlinear modelling of the seismic response of masonry structures: Calibration strategies,” Bulletin of Earthquake Engineering, vol. 20, no. 4, pp. 1999–2043, Mar. 2022, doi: 10.1007/S10518-021-01104-1.
12. Dinani, A. T.; Bisol, G. D.; Ortega, J.; Lourenço, P. B. “Structural Performance of the Esfahan Shah Mosque,” Journal of Structural Engineering, vol. 147, no. 10, p. 05021006, Jul. 2021, doi: 10.1061/(ASCE)ST.1943-541X.0003108.
13. Endo, Y.; Pelà, L.; Roca, P. “Review of Different Pushover Analysis Methods Applied to Masonry Buildings and Comparison with Nonlinear Dynamic Analysis,” https://doi.org/10.1080/13632469.2016.1210055, vol. 21, no. 8, pp. 1234–1255, Nov. 2016, doi: 10.1080/13632469.2016.1210055.
14. European Union, Eurocode-8: Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings. Brussels, Belgium, 2005. [Online]. Available: http://www.phd.eng.br/wp-content/uploads/2014/07/en.1998.3.2005.pdf
15. European Union, Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. Belgium, 2004.
16. Fajfar, P. “A nonlinear analysis method for performance‐based seismic design,” Earthquake Spectra, vol. 16, no. 3, pp. 573–592, 2000, doi: https://doi.org/10.1193/1.1586128.
17. Fazendeiro Sá, L.; Morales-Esteban, A.; Durand, P. “A Seismic Risk Simulator for Iberia,” Bulletin of the Seismological Society of America, vol. 106, no. 3, pp. 1198–1209, 2016, doi: 10.1785/0120150195.
18. Herrero Romero, S. “Teoría y práctica de la restauración de la Mezquita-Catedral de Córdoba durante el siglo XX,” Universidad Politécnica de Madrid, 2015. doi: 10.20868/UPM.thesis.39987.
19. Kaya, A. et al., “Post-earthquake damage assessments of unreinforced masonry (URM) buildings by shake table test and numerical visualization,” Eng Fail Anal, vol. 143, p. 106858, Jan. 2023, doi: 10.1016/j.engfailanal.2022.106858.
20. Kržan, M.; Gostič, S.; Cattari, S.; Bosiljkov, V. “Acquiring reference parameters of masonry for the structural performance analysis of historical buildings,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 203–236, Jan. 2015, doi: 10.1007/s10518-014-9686-x.
21. Lagomarsino S. et al., “Classification of cultural heritage assets and seismic damage variables for the identification of performance levels,” WIT Transactions on the Built Environment, vol. 118, pp. 697–708, Sep. 2011, doi: 10.2495/STR110581.
22. Lagomarsino S.; Cattari, S. “PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 13–47, Jan. 2015, doi: 10.1007/s10518-014-9674-1.
23. Malcata, M.; Ponte, M.; Tiberti, S.; Bento, R.; Milani, G. “Failure analysis of a Portuguese cultural heritage masterpiece: Bonet building in Sintra,” Eng Fail Anal, vol. 115, Sep. 2020, doi: 10.1016/J.ENGFAILANAL.2020.104636.
24. McKenna, F.; Fenves, G. L.; Scott, M. H. OpenSees: Open system for earthquake engineering simulation. Pacific Earthquake Engineering Research Center. Berkeley, CA: University of California, 2000. Accessed: Nov. 21, 2019. [Online]. Available: https://opensees.berkeley.edu/
25. Ozcelik, O.; Misir, I. S.; Yucel, U.; Durmazgezer, E.; Yucel, G.; Amaddeo, C. “Model updating of Masonry courtyard walls of the historical Isabey mosque using ambient vibration measurements,” Journal of Civil Structural Health Monitoring 2022, pp. 1–16, Jul. 2022, doi: 10.1007/S13349-022-00610-3.
26. Petracca, M.; Candeloro, F.; Camata, G. “‘STKO user manual’. ASDEA Software Technology,” Pescara, Italy, 2017. Accessed: Jul. 08, 2020. [Online]. Available: https://asdeasoft.net/pdf/STKOUserManual.pdf
27. Petracca, M.; Pelà, L.; Rossi, R.; Oller, S.; Camata, G.; Spacone, E. “Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls,” Comput Methods Appl Mech Eng, vol. 315, pp. 273–301, Mar. 2017, doi: 10.1016/j.cma.2016.10.046.
28. Petracca, M.; Pelà, L.; Rossi, R.; Zaghi, S.; Camata, G.; Spacone, E. “Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls,” Constr Build Mater, vol. 149, pp. 296–314, Sep. 2017, doi: 10.1016/j.conbuildmat.2017.05.130.
29. Requena-Garcia-Cruz, M. V.; Romero-Sánchez, E.; Morales-Esteban, A. “Numerical investigation of the contribution of the soil-structure interaction effects to the seismic performance and the losses of RC buildings,” Developments in the Built Environment, vol. 12, p. 100096, Dec. 2022, doi: 10.1016/j.dibe.2022.100096.
30. Requena-Garcia-Cruz, M. V.; Bento, R.; Durand-Neyra, P.; Morales-Esteban, A. “Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon,” Structures, vol. 38, pp. 599–617, Apr. 2022, doi: 10.1016/j.istruc.2022.02.024.
31. “Rhino - Rhinoceros 3D.” https://www.rhino3d.com/ (accessed Nov. 10, 2022).
32. Rossi, M.; Cattari, S.; Lagomarsino, S. “Performance-based assessment of the Great Mosque of Algiers,” Bulletin of Earthquake Engineering, vol. 13, no. 1, pp. 369–388, Jan. 2015, doi: 10.1007/s10518-014-9682-1.
33. Spanish Ministry of Public Works [Ministerio de Fomento de España], Update of the seismic hazard maps [Actualización de mapas de peligrosidad sísmica de España]. Spain, Spain, 2012.
34. Swiss Society of Engineers and Architects (SIA), SIA 266/2; SN 505266/2 (in German). Zürich, Switzerland, 2012. Accessed: Nov. 30, 2022. [Online]. Available: http://shop.sia.ch/normenwerk/ingenieur/266-2_2012_d/D/Product
35. Vuoto, A.; Ortega, J.; Lourenço, P. B.; Javier Suárez, F.; Claudia Núñez, A. “Safety assessment of the Torre de la Vela in la Alhambra, Granada, Spain: The role of on site works,” Eng Struct, vol. 264, Aug. 2022, doi: 10.1016/J.ENGSTRUCT.2022.114443.
36. Word Heritage Committee. United Nations Educational, “Inscription: The Mosque of Cordoba (Spain) (08COM IXA),” in Convention concerning the protection of the world cultural and natural heritage, 1984.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Autor / BY-NC

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Los autores conservan los derechos de autor y garantizan a la revista el derecho de una Licencia Creative Commons Atribución - Nocomercial 4.0 Internacional que permite a otros compartir el trabajo con un reconocimiento de la autoría y uso no comercial.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro).
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons"