Comportamiento de las bandas de rotura de puente térmico en tabiques ligeros con entramado de acero = Performance of thermal break strips in lightweight steel framed partition walls
DOI:
https://doi.org/10.20868/ade.2022.5022Palabras clave:
Rendimiento térmico, Bandas de rotura de puente térmico, Estructura ligera de acero, Tabiques divisorios, Mediciones, Thermal performance, Thermal break strips, Lightweight steel frame, Partition walls, MeasurementsResumen
En este trabajo, se midió la resistencia térmica global superficie-superficie (valor R) de diez configuraciones diferentes de tabiques interiores LSF en condiciones controladas de laboratorio. Las pruebas de laboratorio se llevaron a cabo utilizando un aparato de caja mini caliente con un conjunto de dos cámaras climáticas, siendo el rendimiento térmico de las paredes LSF medido utilizando el método de medidor de flujo de calor. Los resultados experimentales se compararon con simulaciones numéricas de elementos finitos. Se evaluaron tres materiales de tiras de rotura de puente térmico (TB) y tres ubicaciones de TB y se compararon con el rendimiento térmico de una pared de referencia sin tiras de TB. En cuanto a los materiales de las bandas de rotura de puente térmico, se llegó a la conclusión de que el mejor rendimiento térmico se obtiene con el aerogel. En cuanto a la ubicación de las tiras TB, la aplicación en el lado interior o exterior presenta rendimientos muy similares y la aplicación en ambos lados del montante de acero muestra un aumento significativo relativo del rendimiento térmico. El espesor de las tiras de TB también tiene una influencia significativa en la resistencia térmica de la pared.
Abstract
In this paper, the overall surface-to-surface thermal resistance (R-value) of ten different configurations from interior partition LSF walls were measured under controlled laboratory conditions. The laboratorial tests were performed using a mini hot box apparatus with a set of two climatic chambers, being the thermal performance of LSF walls measured using the heat flux meter method. The experimental results were compared with finite element numerical simulations. Three Thermal Break (TB) strips materials and three TB locations are assessed and compared with the thermal performance of a reference wall without TB strips. Regarding the TB strips materials, it was concluded that the best thermal performance is achieved by aerogel. Considering the TB strips location, the application inner or outer side, presents very similar performances and the application on both sides of steel stud shows a relative significant thermal performance increase. The thickness of the TB strips also has a significant influence on the wall thermal resistance.
Descargas
Referencias
ASHRAE. (2017). Handbook of Fundamentals (SI Edition). ASHRAE - American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, USA, 2017.
Bruno, R., Bevilacqua, P., Ferraro, V., & Arcuri, N. (2021). Reflective thermal insulation in non-ventilated air-gaps: experimental and theoretical evaluations on the global heat transfer coefficient. Energy and Buildings, 236, 110769. https://doi.org/10.1016/J.ENBUILD.2021.110769
Gorgolewski, M. (2007). Developing a simplified method of calculating U-values in light steel framing. Building and Environment, 42(1), 230–236. https://doi.org/10.1016/j.buildenv.2006.07.001
Gyptec Ibérica. (2022). Technical Sheet: Standard Gypsum Plasterboard. https://www.gyptec.eu/documentos/Ficha_Tecnica_Gyptec_A.pdf
ISO 6946. (2017). Building components and building elements — Thermal resistance and thermal transmittance — Calculation methods, International Organization for Standardization.
ISO 9869-1. (2014). Thermal insulation – Building elements - In-situ measurement of thermal resistance and thermal transmittance. Part 1: Heat flow meter method.
Jelle, B. P., Kalnæs, S. E., & Gao, T. (2015). Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy and Buildings, 96, 329–356. https://doi.org/10.1016/J.ENBUILD.2015.03.024
Kapoor, D. R., & Peterman, K. D. (2021). Quantification and prediction of the thermal performance of cold-formed steel wall assemblies. Structures, 30, 305–315. https://doi.org/10.1016/J.ISTRUC.2020.12.060
Kempton, L., Kokogiannakis, G., Green, A., & Cooper, P. (2021). Evaluation of thermal bridging mitigation techniques and impact of calculation methods for lightweight steel frame external wall systems. Journal of Building Engineering, 43, 102893. https://doi.org/10.1016/J.JOBE.2021.102893
Lupan, L. M., Manea, D. L., & Moga, L. M. (2016). Improving Thermal Performance of the Wall Panels Using Slotted Steel Stud Framing. Procedia Technology, 22, 351–357. https://doi.org/10.1016/J.PROTCY.2016.01.108
Martins, C., Santos, P., & da Silva, L. S. (2016). Lightweight steel-framed thermal bridges mitigation strategies: A parametric study. Journal of Building Physics, 39(4), 342–372.https://doi.org/10.1177/1744259115572130
MS-R0 Test Report. (2008). Test report Ref. 5015 PE 1977/08 -Determination of Thermal Conductivity (Acousticork MS-R0). Departamento de Engenharia Têxtil, Universidade doMinho.
Proctor Group. (2018). Spacetherm ® CBS Specification. https://www.proctorgroup.com/assets/PerformanceSpecs/Spacetherm CBS Performance Specification.pdf
Rasooli, A., & Itard, L. (2018). In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy and Buildings, 179, 374–383. https://doi.org/10.1016/j.enbuild.2018.09.004
Ribeiro, T., Santos, P., & Mateus, D. (2021). Performance of Thermal Break Strips in Lightweight Steel Framed Walls. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021) (pp. 382–389). Springer International Publishing. https://doi.org/10.1007/978-3-030-75315-3_43
Roque, E., & Santos, P. (2017). The effectiveness of thermal insulation in lightweight steel-framedwalls with respect to its position. Buildings, 7(1). https://doi.org/10.3390/buildings7010013
Roque, E., Santos, P., & Pereira, A. C. (2019). Thermal and sound insulation of lightweight steel-framed façade walls. Science and Technology for the Built Environment, 25(2), 156–176. https://doi.org/10.1080/23744731.2018.1506677
Santos, C., & Matias, L. (2006). ITE50 - Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios (in Portuguese). LNEC - Laboratório Nacional de Engenharia Civil.
Santos, P. (n.d.). “Chapter 3 - Energy Efficiency of Lightweight Steel-Framed Buildings,” in Energy Efficient Buildings, Eng Hwa Yap, Ed. London, UK: InTech, 2017, pp. 35–60. https://doi.org/10.5772/66136
Santos, P., Gonçalves, M., Martins, C., Soares, N., & Costa, J. J. (2019). Thermal transmittance of lightweight steel framedwalls: Experimental versus numerical and analyticalapproaches. Journal of Building Engineering, 25.https://doi.org/10.1016/j.jobe.2019.100776
Santos, P., Lemes, G., & Mateus, D. (2019). Thermal transmittance of internal partition and external facade LSF walls: A parametric study. Energies, 12(14). https://doi.org/10.3390/en12142671
Santos, P., Martins, C., da Silva, L. S., & Bragança, L. (2014). Thermal performance of lightweight steel framed wall: The importance of flanking thermal losses. Journal of Building Physics, 38(1), 81–98. https://doi.org/10.1177/1744259113499212
Santos, P., & Mateus, D. (2020). Experimental assessment of thermal break strips performance in load-bearing and non-load-bearing LSF walls. Journal of Building Engineering, 32, 101693. https://doi.org/10.1016/j.jobe.2020.101693
Santos, P., & Ribeiro, T. (2021). Thermal performance improvement of double-pane lightweight steel framed walls using thermal break strips and reflective foils. Energies, 14(21). https://doi.org/10.3390/en14216927
Santos, Paulo., Silva, L. S. da., & Ungureanu, V. (n.d.). Energy Efficiency of Light-weight Steel-framed Buildings, 1st ed. European Convention for Constructional Steelwork (ECCS), Technical Committee 14 - Sustainability & Eco-Efficiency of Steel Construction, ISBN 978-92-9147-105-8, N.129, 2012.
Soares, N., Martins, C., Gonçalves, M., Santos, P., da Silva, L. S., & Costa, J. J. (2019). Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review. In Energy and Buildings (Vol. 182, pp. 88–110). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2018.10.021
Váradi, J., & Toth, E. (2009). Thermal Improvement of Lightweight Façades containing Slotted Steel Girders. In Twelfth International Conference on Civil, Structural and Environmental Engineering Computing.
Volcalis. (2022). Technical Sheet: Alpha Mineral Wool. https://www.volcalis.pt/categoria_file_docs/fichatecnica_volcalis_alpharollo-386.pdf
Descargas
Publicado
Número
Sección
Licencia
1. Los autores conservan los derechos de autor y garantizan a la revista el derecho de una Licencia Creative Commons Atribución - Nocomercial 4.0 Internacional que permite a otros compartir el trabajo con un reconocimiento de la autoría y uso no comercial.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro).
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons"