Materiales e innovación en arquitectura sanitaria: cobre, barrera antibacteriana para espacios sanitarios = Materials and innovation in sanitary architecture: copper, antibacterial barrier for sanitary spaces
DOI:
https://doi.org/10.20868/ade.2017.3678Palabras clave:
Cobre, superficie antibacteriano, infecciones intrahospitalarias, arquitectura sanitaria, Copper, antibacterial surface, nosocomial infections, sanitary architectureResumen
La inclusión del cobre como material antibacteriano en la arquitectura sanitaria ayuda a resolver la gran paradoja que existe en los servicios asistenciales; entrar a servicios de salud para sanarse de una enfermedad puntual y adquirir enfermedades de riesgo de muerte. Esta investigación demuestra la eficacia del cobre en formato laminar en vez de sólido, haciendo mediciones de con luminometría, abriendo un camino factible para el cobre como revestimiento antibacteriano y dotando de su propiedad antibacteriana superficial a costos reducidos, sin necesidad de cambios de mobiliario ni obras
Abstract
The inclusion of copper as an antibacterial material in health architecture helps to solve the great paradox that exists in healthcare services; enter health services to heal from a specific illness and acquire life-threatening diseases. This research demonstrates the effectiveness of copper in laminar format instead of solid, making measurements of ATP with luminometry, opening a feasible way for copper as an antibacterial coating and endowing its superficial antibacterial property at reduced costs, without the need for furniture changes or works.
Descargas
Referencias
Grass, G. (2011). Applied and Environmental Microbiology, Metallic copper as an antimicrobial surface, vol. 77, no. 5, pp.1541-1547.
Kappes, T. (2012). Revista Chilena De Infectología : Órgano Oficial De La Sociedad Chilena De Infectología, Copper activity against multiresistant gram negative bacilli isolated from chilean hospitals, vol. 29, no. 6, pp.622- 627.
Michels, H. T. (2008). Copper Development Association Inc, International Journal of Metalcasting, Antimicrobial properties of copper alloy surfaces, with a focus on hospital-acquired infections, vol. 2, no. 3, pp. 47–56.
Michels, H. T. (2009). Letters in applied microbiology, Effects of temperature and humidity on the efficacy of methicillin‐resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper, vol. 49, no. 2, pp. 191-195.
Monk, A. (2014). BMC Microbiology, Potent bactericidal efficacy of copper oxide impregnated non-porous solid surfaces, vol.14, pp.57.
Salgado, C. D. (2013). Infection Control and Hospital Epidemiology, Copper Surfaces Reduce the Rate ofHealthcare-Acquired Infections in the Intensive Care Unit, vol. 34, no. 5, pp. 479- 486.
Yang, J. (2006). Association of Researchers in Construction Management, ARCOM, Innovative design and construction solutions for improved therapeutic healing environments, Procs 22nd Annual ARCOM Conference, 2, pp. 959-968.
Descargas
Publicado
Número
Sección
Licencia
1. Los autores conservan los derechos de autor y garantizan a la revista el derecho de una Licencia Creative Commons Atribución - Nocomercial 4.0 Internacional que permite a otros compartir el trabajo con un reconocimiento de la autoría y uso no comercial.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro).
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons"