Metodología para el cálculo de los cimientos de una máquina rotativa que soporta cargas dinámicas incluido el arranque transitorio = A methodology for the calculation of the foundation of a rotary machine supporting dynami c loads including the transient star ting

Juan Luis Terrádez Marco, Antonio Hospitaler Pérez


DOI: https://doi.org/10.20868/ade.2020.4450

Texto completo:

PDF (English)

Resumen


Resumen— A menudo, los ingenieros resuelven problemas en relación con estructuras y cimientos desde el punto de vista de la estática estructural. Nada tan lejos de la realidad cuando finalmente, en la estructura o los cimientos, se instala una máquina. Las cargas producidas por las máquinas cambian con el tiempo y no serán constantes. Las partes que formaron una máquina generalmente se mueven y transmiten a la estructura cargas dinámicas que cambian con el tiempo. Pensar en cargas dinámicas significa considerar la variable "tiempo" para calcular una base o una estructura. Una parte de la energía desperdiciada por la máquina se transforma en radiación de la vibración de la máquina y se transmite al suelo (Richart et al., 1970). Durante el transitorio para obtener la velocidad nominal de la máquina, el sistema puede cruzar su "frecuencia natural" y colapsar por un exceso de amplitud de vibración (Richart et al., 1970; Arya et al., 1979; Chowdhury and Dasgupta, 2009). Las ecuaciones diferenciales de D'Alambert basadas en la analogía de Lysmer and Richart (1966) se aplicaron en el dominio del tiempo para estudiar el movimiento vertical, deslizamiento y balanceo (Barkan, 1962) de la base del conjunto - máquina de bloque inercial. Las ecuaciones diferenciales se integraron con un esquema de pasos de tiempo (Chowdhury an Dasgupta, 2009), el método β de Newmark (1959), obteniendo la amplitud de vibración, velocidad, aceleración y fuerza en el modo de operación transitoria y permanente. La metodología se aplicó a una máquina rotativa que funciona a 3.000 r.pm. con un bloque inercial y una base de bloque, un problema de 3 masas con 37 variables. El suelo, sus parámetros e impedancia se calculan aplicando la Norma ACI 351.3R-04 (2004). Las cargas dinámicas se calcularon de acuerdo con la norma ACI 351.3R-04, las normas API estándar 613 (Arya et al., 1979) y la norma ISO 1940/1 (2003). Se desarrolló un programa MATLAB para resolver las ecuaciones diferenciales D’Alambert y obtener la amplitud de vibración, velocidad, aceleración y fuerza cambiando la velocidad de la máquina durante los primeros 3.000 segundos desde 0 a 3.000 segundos con diferentes funciones de arranque (Rodriguez et al., 2010). El programa generó soluciones aleatorias de las 37 variables. El programa permitió corregir restricciones a la solución calculada. Se aplicó un conjunto de reglas al modo de operación transitorio y permanente de la máquina (Rodriguez et al., 2010). Los límites, extraídos de la Norma ISO, de la amplitud de vibración, velocidad, aceleración y fuerza en el modo de operación transitoria y permanente se aplicaron para obtener la solución correcta. Finalmente, esta metodología permite aplicar metaheurísticas para optimizar el costo de la fundación.

Abstract

Often engineers solve problems in relationship with structures and foundations from the point of view of structural statics. Nothing so far of the reality when finally, on the structure or the foundation, is installed a machine. Loads produced by machines change with time and will not be constant. The parts that made a machine are usually moving and they transmit to the structure dynamics loads which change with time. Thinking in dynamics loads means consider the variable “time” to calculate a foundation or a structure. A part of the energy wasted by the machine is transformed in radiation from the vibration of the machine and transmitted to the soil (Richart et al., 1970). During the transient to get the nominal speed of the machine, the system can cross its “natural frequency” and collapse by an excess of amplitude of vibration (Richart et al., 1970; Arya et al., 1979; Chowdhury and Dasgupta, 2009). D’Alambert differential equations based in the Lysmer’s analogy (Lysmer and Richart, 1966) were applied in the time domain to study the vertical movement, sliding and rocking (Barkan, 1962) of the ensemble foundation – inertial block – machine.

Equations differentials were integrated with a time-step scheme (Chowdhury and Dasgupta, 2009), the Newmark’s β method (Newmark, 1959), getting the amplitude of vibration, speed, acceleration and strength in the transient and in the permanent operation mode.

Methodology was applied to a rotary machine working at 3.000 r.pm. with an inertial block and a block foundation, a 3-mass problem with 37 variables. The ground, its parameters and impedance are calculated applying the Norma ACI 351.3R-04 (2004). Dynamic loads were calculated in accordingto ACI Norm 351.3R-04, API Norms Standard 613 (Arya et al., 1979) and ISO Norm 1940/1 (2003). A MATLAB program was developed to solve the D’Alambert differential equations and get the amplitude of vibration, speed, acceleration and strength changing the speed of the machine during the first 3.000 seconds since 0 to 3.000 seconds with different starting functions (Rodriguez et al., 2010). Random solutions of the 37 variables were generated by the program. The program allowed to fix constraints to the solution calculated. A set of rules were applied to the transient and the permanent operation mode of the machine (Rodriguez et al., 2010). Limits, extracted from the ISO Norm, of the amplitude of vibration, speed, acceleration and strength in the transient and in the permanent operation mode were applied to get the right solution. Finally, this methodology permits to applied metaheuristics to optimize the cost of the foundation.

 

 


Palabras clave


Cargas dinámicas; Cimientos; Transitorio; Vibraciones; Dynamic loads; Foundations; Transient; Vibrations

Referencias


ACI Committee 351. (2004). Foundations for Dynamic Equipment, ACI 351.3R-04. UsSA: American Concrete Institute.

Anyagebunam, A.J. (2011). Minimun foundation mass for vibration control. Journal of Geotechnical Engineering, American Society of Civil Engineers (ASCE). Reston, February, 6 pp.

Arya, S., O'Neill, M., and Pincus, G. (1979). Design of Structures and Foundations for Vibrating Machines. Houston: Gulf Publishing Company, 193 p.

Barkan, D. (1962). Dynamics of bases and Foundations. New York: Mac Graw Hill Book Company, 434 p.

Calavera, J. (2000). Calculo de estructuras de cimentación, 4ª Edición. Madrid: INTEMAC, 529 p.

Chowdhury, I., Dasgupta, S.P. (2009). Dynamics of Structure and Foundations. London: CRC Press, vol. 2, chapter 5, pp. 505-845.

ISO NORM 1940/1:2003 (2003). Mechanical vibration – Balance quality requirements for rotors in a constant (rigid) state. International Organization for Standardization. Second edition.

Lysmer, J., Richart, F.E. (1966). Dynamic response of footing to vertical loading. Journal of the Soil Mechanics and Foundations Division. Berkeley: American Society of Civil Engineers (ASCE), vol. 92, pp. 65-91.

Martinez M., Francisco J. (2007). Optimización heurística de pilas rectangulares huecas de hormigón armado, tesis doctoral, publicación CST/GPRC-17. Valencia: Universidad Politécnica de Valencia, 327 p.

Newmark, N.M. (1959). A Method of Computation for Structural Dynamics. Journal of Engineering Mechanics Division (ASCE), vol 85, nº EM3, pp 67-94.

Prakash, S.P., Vijay K. (1988). Foundations for Machines: Analysis and Design. Massachusetts: John Wiley & Sons, chapter 8, 656 pp.

Richart, F.E., Woods, R.D., Hall, J.R. (1970). Vibration of soils and foundations. New Jersey: Prentice Hall, 414 p.

Rodriguez, J.L., Alemán, M., Garcia Benítez, L., Iribe-Adundi, J.J. (2010). Problemas de Operación Durante el arranque de un Bloque Energético de 330 MW. Matanzas: Universidad de Matanzas, 15 p.

Sienkiewicz, Z., Wilczynski, B. (1993). Minimum-weight design machine foundations under vertical load. Journal of Engineering Mechanics, American Society of Civil Engineers (ASCE), Reston, vol. 119, nº 9, pp. 1781-1797.

Sienkiewicz, Z., Wilczynski, B. (1996). Shape optimization of a dynamically loaded machine foundation coupled to a semi-infinite inelastic medium, Structural Optimization 12. Berlin: Springer-Verlag, vol. 12, pp. 29-34.

Silva, M., Arora, J.S., Swan Colby, C., Reyolando, M.L.R.F. (2002). Optimization of elevated concrete foundations for vibrating machines. Journal of Structural Engineering, American Society of Civil Engineers (ASCE), vol. 128, nº 11, pp. 1470-1479.

Srinivasulu, P., Vaidyanathan, C.V. (1976). Handbook of Machine Foundations. New Delhi: McGraw Hill Education (India) Private Limited, chapter 4, 236 pp.




Copyright (c) 2020 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.