Parámetros de la Fractura del Hormigón Reforzado con Fibras de Basalto = Fracture Parameters of Basalt Fiber Reinforced Concrete

Marta Kosior-Kazberuk, Julita Krassowska, Alejandra Vidales Barriguete, Carolina Piña Rodríguez


DOI: https://doi.org/10.20868/ade.2018.3800

Texto completo:

PDF

Resumen


Resumen

En el estudio se utilizó un método de flexión de tres puntos para determinar la tenacidad de la fractura de los hormigones con fibras de basalto. Las propiedades de fractura y el comportamiento posterior al agrietamiento del hormigón, se analizaron sobre la base de las curvas de desplazamiento de la abertura de grietas de carga (P-CMOD). Las fibras de basalto cortadas (50 mm de longitud, 0,02 mm de diámetro) se agregaron al hormigón de cemento con un contenido de 2,0; 4,0 y 8,0 kg/m3. La adición de la fracción volumétrica considerada de fibras de basalto tuvo una influencia significativa en las propiedades de fractura del hormigón, mientras que las fibras tuvieron un ligero efecto en las propiedades de resistencia del hormigón. Las fibras de basalto causaron la mejora de los parámetros de fractura como KIc, CTODc y la energía de fractura total GF. El análisis de los diagramas P-CMOD demostró que el comportamiento de la fractura después de la fractura del haz se mejoró mucho mediante la adición de fibras de basalto. Los resultados de la medición de la dureza y las características de absorción de energía mostraron que las muestras de hormigón reforzado con fibrasmejoran su comportamiento dúctil y su capacidad de absorción de energía, en comparación con las muestras de hormigón ordinario.

Abstract

A three-point bending method was used in the study to determine the fracture toughness of concretes with basalt fibers. The post-cracking behavior and fracture properties of concrete were analyzed on the basis of load–crack mouth opening displacement (P–CMOD) curves. The chopped basalt fibers (50 mm length; 0.02 mm diameter) were added to cement concrete at the contents of 2,0; 4,0 and 8,0 kg/m3. The addition of the considered volume fraction of basalt fibers had significant influence on the fracture properties of concrete, while the fibers had slight effect on the strength properties of concrete. The basalt fibers caused the improvement of the fracture parameters as KIc, CTODc and total fracture energy GF. The analysis of P-CMOD diagrams proved that the post-cracking fracture behavior of the beam was greatly improved by the addition of basalt fibers. The results of measuring the toughness and energy-absorption characteristics showed that fiber reinforced concrete specimens acquire a great ductile behavior and energy absorption capacity, compared to ordinary concrete specimens.


Palabras clave


Hormigón; Fibras de basalto; Fractura mecánica; Comportamiento posterior al agrietamiento; Concrete; Basalt fiber; Fracture mechanics; Post-cracking behavior

Referencias


ACI 544. IR-96. State-of-the-art report on fiber reinforced concrete. Manual of concrete practice. Farmington Hills, 1998.

Borhan, T.M. (2012) Properties of glass concrete reinforced with short basalt fiber. Materials and Design, 42, 265-271.

Branston, J., Das, S., Kenno, S.Y., Taylor, C. (2016) Mechanical behavior of basalt fiber reinforced concrete, Construction and Building Materials, 124, pp. 878-886.

Dias, D., Thaumaturgo, C. (2005) Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement & Concrete Composites, 27(1), pp. 49-54.

EN 12390-3. Testing Hardened Concrete: Compressive strength of test specimens, 2011.

High, C., Seliem, H.M., El-Safty, A., Rizkalla, S.H. (2015) Use of basalt fibers for concrete structures. Construction and Building Materials, 96, pp. 37-46.

Jenq, Y.S., Shah, S.P. (1985) Two parameter fracture model for concrete. Journal of Engineering Mechanics, 111, pp. 1227-1241.

Kabay, N. (2014) Abrasion resistance and fracture energy of concretes with basalt fiber. Construction and Building Materials, 50, pp. 95-101.

Li, W., Xu, J. (2009) Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading, Material Science Engineering A, 505(1-2), pp. 178-186.

Recommendation TC 50-FMT RILEM (1985) Determination of the Fracture Energy of Mortars And Concretes By Means of Three-Point Bend Tests on Notched Beams. Materials and Structures, 18, pp. 285 – 290.

Recommendation TC 89-FMT RILEM (1990) Determination of fracture parameters (KIc and CTODc) of plain concrete using three-point bend test. Materials and Structures, 23, pp. 457-460.

Shah, S.P., Swartz, S.E., Ouyang, Ch. (1995) Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John Wiley & Sons, New York,1995.

Sim, J., Park, C, Moon, D. (2005) Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36, pp. 504-512.

Wei, B., Cao, H., Song, S. (2010) Environmental resistance and mechanical performance of basalt and glass fibers. Materials Science and Engineering A, 527, pp. 4708-4715.

Wei, B., Cao, H., Song, S. (2011) Surface modification and characterization of basalt fibers with hybrid sizings. Composites: Part A, 42, pp. 22-29.




Copyright (c) 2018 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.