Estudio y aplicación de diferentes metodologías de cálculo para el conocimiento gradual del proceso constructivo y comportamiento mecánico de una arquería de la Mezquita de Córdoba = Study and application of different calculation methodologies for the gradual knowledge of the construction process and mechanical behavior of an arcade of the Mosque of Cordoba

María Escalada Marco-Gardoqui


DOI: https://doi.org/10.20868/abe.2017.3.3671

Texto completo:

PDF

Resumen


Resumen

La mecánica de las estructuras de fábrica ha sido durante mucho tiempo de alguna manera abandonada en la enseñanza universitaria durante la licenciatura de arquitectura, en comparación con otros campos del conocimiento, como el hormigón armado, el acero y la madera. Una parte importante de nuestro patrimonio arquitectónico se erigió empleando estas técnicas ampliamente difundidas antaño, pero ahora olvidadas tanto en la práctica constructiva como en el marco teórico de la universidad, más centrado en tecnologías contemporáneas e innovadoras. Los avances del software computacional como son los modelos macro/micro de elementos finitos nos permiten realizar un análisis extremadamente complejo de estructuras de mampostería, pero paradójicamente, al mismo tiempo, se distancian de las limitaciones y la forma en que los antiguos concibieron y entendieron la arquitectura. Los maestros canteros fueron capaces de construir perfectamente sin la ayuda de tales pruebas precisas sobre los materiales. Por lo tanto, la mentalidad que hay que adoptar a la hora de abordar la enseñanza del comportamiento de las estructuras de mampostería es aquella en la que se estimule al alumnado a apropiarse del conocimiento no solo de la geometría, sino también y principalmente de las fases del proceso constructivo y de las técnicas acordes al período histórico. Solo una vez elaboradas ciertas hipótesis sobre ellas, se deberá comenzar con el cálculo gráfico-numérico. El objetivo del presente trabajo es exponer una metodología de enseñanza basada en programas de optimización y ejemplificada con el estudio de un caso concreto: el análisis de las arquerías de la Mezquita de Córdoba y de los posibles sistemas de contrarresto provisionales de empujes mediante tirantes y apeos, buscando la rentabilidad material de los mismos. Se plantea un recorrido progresivo, con un gradiente de conocimiento, a través de un estudio gráfico-numérico que engloba cuatro programas de diferente complejidad: Geogebra, Autocad + Excel, Maple y Sap2000, partiendo siempre de una hipótesis constructiva razonada. De esta manera, se resuelve el mismo problema de maneras diferentes para entender la estática gráfica desde varias perspectivas y ver cómo agilizar y “sistematizar” el cálculo de este tipo de estructuras mediante modelos elaborados con software de optimización matemática y programación simbólica, aprendiendo a la vez, cuáles son sus limitaciones y dificultades.

Abstract

he mechanics of masonry structures have been for a long time pushed aside in university teaching during the bachelor degree of architecture in comparison with other fields of knowledge, such as reinforced concrete, steel and wood. An important part of our building heritage is raised using techniques once widely spread but now forgotten in the construction practice as well as in the theoretical university framework, more focused on contemporary and innovative technologies. Developments regarding computational software like FEM macro/micro modelling and discrete element methods allow us nowadays to carry out extremely complex analysis of accomplished masonry structures. Paradoxically, at the same time, this distances itself from the limitations and the way ancients conceived and understood architecture. Master bricklayers and stonemasons were able to build wonderfully without the help of such precise tests on the materials. Therefore, the mind-set when tackling the teaching of masonry structures should be that one where it is forced to the student body to take ownership of the knowledge of the geometry, constructive techniques and processes according to the precise historic period, keeping the tradition alive. The purpose of this work is to present a teaching methodology mainly based on optimization programs for masonry structures. It is illustrated with the analysis of the construction process of the colonnaded portico with double arches of the Great Mosque of Cordoba. The requirement of hypothetical auxiliary resources, such as wood props for the fixation of the capitals and tightening structures will also be considered. This methodology should be understood as a progressive path with a knowledge gradient through a graphical-numerical study that involves the use of four programs: Geogebra, Autocad + Excel, Maple and Sap2000. In this way, the same problem of the thrust line falling within the boundaries of the archery is solved in various ways to understand graphic statics from different perspectives. Moreover, creating a personal optimization model sheet will be taught as a way of accelerating and “systematizing” the calculation. The study will be followed by more complex analysis using symbolic calculation programs. As a result of the learning process described, the limitation and difficulties of each way of approaching the stability problem of the archery will be understood. Not only that, but also students will take advantage of the freedom offered when proceeding to the limit analysis suited to their own interests, always having graphical support.

 


Palabras clave


Educación universitaria de posgrado; aprendizaje autónomo; proceso constructivo; arquerías Mezquita de Córdoba; estática gráfica; optimización matemática; Postgraduate university education; self-learning, constructive process, arches Mosque of Cordoba, graphic statics, mathematical optimization self-learning, constructive process, arches Mosque of Cordoba, gr

Referencias


Carl E. Wieman, “Large-scale comparison of science teaching methods sends clear message”, PNAS –Proceedings of the National Academy of Sciences of the United States of America, vol.111 nº 23, pp. 8319 - 8320, 2014

G. Torregosa Gironés, “El desarrollo del sentido geométrico como una relación entre la visualización y el razonamiento configural”, vol.70, pp.16-20, 2015

L. Rubio, J. Prieto, J. Ortiz, “La matemática en la simulación con Geogebra. Una experiencia con el movimiento en caída libre”, Revista Internacional de Investigación e Innovación Educativa, nº 5, pp.93 - 94, 2016

D. Mencías Carrizosa, “Verificación de la estabilidad de estructuras de fábrica mediante Geometría Dinámica”, Sociedad de la Información nº 47, pp. 1-7, 2014

N. Tripathi, N. Srivastava, “Optimization problems solved by different platforms say optimum tool box (Matlab) and Excel Solver”, International Research Journal of Engineering and Technology (IRJET), Volume: 04 Issue: 09, pp. 1284 –1287, 2017

S.Huerta, “Mecánica de las estructuras de fábrica: el enfoque del equilibrio”, Informes de la Construcción, Vol. 56, nº 496, pp. 74-88, 2005

F. Magdalena Layos, “El problema del rozamiento en el análisis de estructuras de fábrica mediante modelos de sólidos rígidos”, PhD Tesis. Dir. Huerta Fernández, Santiago y Hernando García, José Ignacio, 2013

S.Huerta, “Arcos, bóvedas, cúpulas. Geometría en el cálculo tradicional de estructuras de fábrica”, pp. 14-17, 75-77, 2004

A.J. Mas-Guindal, “Mecánica de las estructuras antiguas o cuando las estructuras no se calculaban”, pp. 73-80, 2011.

J. Heyman, “El esqueleto de piedra”, pp. 17-31, 1997.

J. Antuña, “Creación de herramientas interactivas para la enseñanza de estructuras de edificación: Modelos virtuales de bóvedas nervadas” Proyecto de innovación educativa IE1415- 03015, financiado por la Universidad Politécnica de Madrid, 2014-2015


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.