Uso de técnicas de voxelización en el tratamiento de nubes de puntos de distinto origen en entornos de edificación = Use of voxelisation techniques in the treatment of point clouds of different origin in building environments
DOI:
https://doi.org/10.20868/ade.2022.5037Palabras clave:
Vóxel, Nube De Puntos, Voxelización, Multiespectral, Fusión, Voxel, Point Cloud, Voxelisation, Multispectral, FusionResumen
El empleo de nubes de puntos adquiridas por distintas técnicas y herramientas como el escáner laser, LIDAR o fotogrametría (terrestre y aérea), tiene cada vez más usos y empleos en el entorno constructivo y de la edificación. Una nube de puntos no es más que una colección de puntos definidos por sus coordenadas dentro de un espacio cartesiano: X, Y, Z. A su vez, cada punto puede tener una propiedad adicional registrada: color, intensidad del pulso retornado, etc. Los puntos dentro de estas nubes están desestructurados y no contienen información semántica, geométrica o topológica de los objetos. Esta falta de estructura forma un cuello de botella en el proceso de estos datos y en el desarrollo y obtención de información útil derivada a partir de ellos. Para poder evaluar el funcionamiento y posibilidades de los vóxeles multiespectrales, se han tomado una serie de datos con distintos sensores produciendo múltiples nubes de puntos. Esta toma de datos se ha enfocado al estudio de un muro de cerramiento de un edificio de Patrimonio Histórico. Una vez adquiridas las nubes de puntos de cada sensor, se ha realizado una voxelización, fusionando la información multiespectral en cada vóxel. Mediante medidas estadísticas, podemos asegurar la calidad en el proceso de fusión.
Abstract
The use of point clouds acquired by different techniques and tools such as laser scanners, LIDAR or photogrammetry (terrestrial and aerial) is increasingly being used in the construction and building environment. A point cloud is nothing more than a collection of points defined by their coordinates within a Cartesian space: X, Y, Z. In turn, each point can have an additional registered property: colour, intensity of the returned pulse, etc. The points within these clouds are unstructured and contain no semantic, geometric or topological information about the objects. This lack of structure forms a bottleneck in the processing of this data and in developing and obtaining useful information derived from it. In order to evaluate the performance and possibilities of multispectral voxels, a series of data has been collected with different sensors producing multiple point clouds. This data collection was focused on the study of an enclosure wall of a historical heritage building. Once the point clouds have been acquired from each sensor, voxelisation has been performed, fusing the multispectral information in each voxel. By means of statistical measurements, we can ensure the quality of the fusion process.
Descargas
Referencias
E.Berra, S. Gibson-Poole, A. MacArthur, R. Gaulton, and A.Hamilton, “Estimation of the spectral sensitivity functionsof un-modified and modified commercial off-the-shelfdigital cameras to enable their use as a multispectralimaging system for UAVs,” International Archives of thePhotogrammetry, Remote Sensing and Spatial InformationSciences - ISPRS Archives, vol. 40, no. 1W4, pp. 207–214,2015, doi: 10.5194/isprsarchives-XL-1-W4-207-2015.
G.Bitelli, G. Castellazzi, A. M. D’Altri, S. de Miranda, A.Lambertini, and I. Selvaggi, “AUTOMATED VOXELMODEL FROM POINT CLOUDS FOR STRUCTURALANALYSIS OF CULTURAL HERITAGE,” ISPRS -International Archives of the Photogrammetry, RemoteSensing and Spatial Information Sciences, vol. XLI-B5, no.September, pp. 191–197, Jun. 2016, doi:10.5194/isprsarchives- XLI-B5-191-2016.
G.Castellazzi, A. D’Altri, G. Bitelli, I. Selvaggi, and A.Lambertini, “From Laser Scanning to Finite ElementAnalysis of Complex Buildings by Using a Semi-AutomaticProcedure,” Sensors, vol. 15, no. 8, pp. 18360–18380, Jul.2015, doi: 10.3390/s150818360.
W.Dai, B. Yang, Z. Dong, and A. Shaker, “A new method for3D individual tree extraction using multispectral airborneLiDAR point clouds,” ISPRS Journal of Photogrammetryand Remote Sensing, vol. 144, 2018, doi:10.1016/j.isprsjprs.2018.08.010.
Y.-F. Liu, S. Cho, B. F. Spencer, and J.-S. Fan, “Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction,” Journal of Computing in Civil Engineering, 2016, doi: 10.1061/(asce)cp.1943-5487.0000446.
O.Monserrat and M. Crosetto, “Deformation measurementusing terrestrial laser scanning data and least squares 3Dsurface matching,” ISPRS Journal of Photogrammetry andRemote Sensing, 2008, doi: 10.1016/j.isprsjprs.2007.07.008.
C.Ordóñez, J. Martínez, P. Arias, and J. Armesto, “Measuringbuilding façades with a low-cost close- rangephotogrammetry system,” Automation in Construction,2010, doi: 10.1016/j.autcon.2010.03.002.
P.Oskouie, B. Becerik-Gerber, and L. Soibelman, “Automatedmeasurement of highway retaining wall displacementsusing terrestrial laser scanners,” Automation inConstruction, 2016, doi: 10.1016/j.autcon.2015.12.023.
F.Poux and R. Billen, “Voxel-based 3D Point Cloud SemanticSegmentation: Unsupervised geometric and relationshipfeaturing vs deep learning methods,” ISPRS InternationalJournal of Geo-Information, vol. 8, no. 5, May 2019, doi:10.3390/ijgi8050213.
G.Teza, A. Galgaro, N. Zaltron, and R. Genevois, “Terrestriallaser scanner to detect landslide displacement fields: A newapproach,” International Journal of Remote Sensing, 2007,doi: 10.1080/01431160601024234.
Q.Wang, M. K. Kim, J. C. P. Cheng, and H. Sohn, “Automatedquality assessment of precast concrete elements withgeometry irregularities using terrestrial laser scanning,”Automation in Construction, 2016, doi:10.1016/j.autcon.2016.03.014.
Q.Wang, M. K. Kim, H. Sohn, and J. C. P. Cheng, “Surfaceflatness and distortion inspection of precast concreteelements using laser scanning technology,” 2016. doi:10.12989/sss.2016.18.3.601.
Q.Wang and M.-K. Kim, “Applications of 3D point cloud datain the construction industry: A fifteen-year review from2004 to 2018,” Advanced Engineering Informatics, vol. 39,no. September 2018, pp. 306–319, Jan. 2019, doi:10.1016/j.aei.2019.02.007.
Y.Wang et al., “3DV: 3D dynamic voxel for action recognitionin depth video,” Proceedings of the IEEE Computer SocietyConference on Computer Vision and Pattern Recognition,pp. 508–517, 2020, doi: 10.1109/CVPR42600.2020.00059.
Y.Xu, X. Tong, and U. Stilla, “Voxel-based representation of3D point clouds: Methods, applications, and its potential use in the construction industry,” Automation in Construction,vol. 126, no. February, p. 103675, Jun. 2021, doi:10.1016/j.autcon.2021.103675.
Z.Zhou, J. Gong, and M. Guo, “Image-Based 3DReconstruction for Posthurricane Residential BuildingDamage Assessment,” Journal of Computing in CivilEngineering, 2016, doi: 10.1061/(asce)cp.1943-5487.0000480.
X.Zou, G. Zhao, J. Li, Y. Yang, and Y. Fang, “3D LANDCOVER CLASSIFICATION BASED ONMULTISPECTRAL LIDAR POINT CLOUDS,” TheInternational Archives of the Photogrammetry, RemoteSensing and Spatial Information Sciences, vol. XLI-B1,2016, doi: 10.5194/isprs-archives-xli-b1- 741-2016.
Descargas
Publicado
Número
Sección
Licencia
1. Los autores conservan los derechos de autor y garantizan a la revista el derecho de una Licencia Creative Commons Atribución - Nocomercial 4.0 Internacional que permite a otros compartir el trabajo con un reconocimiento de la autoría y uso no comercial.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro).
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons"