Potencial de las tecnologías inmersivas en el análisis del ciclo de vida de las edificaciones = Potential of immersive technologies in the analysis of the life cycling of buildings

Autores/as

  • Jaime Arriagada Universidad Politécnica de Madrid.
  • Mercedes Valiente Universidad Politécnica de Madrid

DOI:

https://doi.org/10.20868/ade.2019.4375

Palabras clave:

Realidad virtual, Realidad mixta, Realidad aumentada, Análisis del ciclo de vida, Sustentabilidad de la edificación, Virtual reality, Mixed reality, Augmented reality, Life Cicle analysis, Building sustainability

Resumen

La presente propuesta establece el potencial de la incorporación de tecnologías inmersiva enfocada en 3 herramientas: Realidad Virtual, Mixta y Aumentada en el Análisis del Ciclo de Vida de las Edificaciones, dos tendencias que se han incorporado fuertemente en la Industria durante la última década. La inversión en esta tecnología tiene un costo inicial en equipamiento que oscila entre los 199 y 4995 USD y tienen distintos enfoques y grados de inmersión; por otra parte, los proyectos de edificación se clasifican en distintas fases, buscando establecerla demanda de energía y la emisión de gases con efecto invernadero en cada una de ellas. El reconocimiento de las herramientas tecnológicas inmersivas posibles de utilizar, en fases relevantes del ciclo de vida, permite establecer estrategias de implementación adecuadas a los requerimientos actuales de un proyecto. Se puede observar que, toma relevancia en la etapa de diseño, la tecnología de Realidad Virtual y visualización (Matterport, NavVis, Oculus y HTC); en las etapas intermedias - desde la fabricación a la construcción – el potencial viene dado por las herramientas asociadas a la Realidad Aumentada (Hololens y Daqri) y finalmente, varias de las herramientas estudiadas cuentan con potencial para ser incorporadas en las últimas fases llamadas de funcionamiento y demolición o reciclaje.

Abstract

This proposal establishes the potential of the incorporation of immersive technologies focused on 3 tools: Virtual, Mixed and Augmented Reality in the Analysis of the Building Life Cycle, two trends that have been strongly incorporated in the Industry during the last decade. The investment in this technology has an initial cost in equipment that oscillates between 199 and 4995 USD and they have different approaches and degrees of immersion; On the other hand, building projects are classified into different phases, seeking to establish energy demand and the emission of greenhouse gases in each of them. The recognition of the immersive technological tools possible to use, in relevant phases of the life cycle, allows to establish implementation strategies appropriate to the current requirements of a project. It can be seen that, it takes relevance in the design stage, Virtual Reality technology and visualization (Matterport, NavVis, Oculus and HTC); In the intermediate stages - from manufacturing to construction - the potential is given by the tools associated with Augmented Reality (Hololens and Daqri) and finally, several of the tools studied have the potential to be incorporated into the last phases of operation. and demolition or recycling.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abd Rashid A.F., Yusoff S. (2015). A review of life cycle assessment method for building industry. Renew Sustain Energy Rev, 45, 244–248. https://doi.org/10.1016/j.rser.2015.01.043

Abulrub A-H.G., Attridge A.N., Williams M.A. (2011). Virtual reality in engineering education: The future of creative learning BT - 2011 IEEE Global Engineering Education Conference, EDUCON 2011, April 4, 2011 - April 6, 751– 757. https://doi.org/10.1109/EDUCON.2011.5773223

Busch M., Lorenz M., Tscheligi M. (2014). Being there for real. Proc 8th Nord Conf Human-Computer Interact Fun, Fast, Found - Nord ’14, 117–126. https://doi.org/10.1145/2639189.2639224

Buyle M., Braet J., Audenaert A. (2013). Life cycle assessment in the construction sector: A review. Renew Sustain Energy Rev, 26, 379–388. https://doi.org/10.1016/j.rser.2013.05.001

Cabeza L.F., Rincón L., Vilariño V. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew Sustain Energy Rev, 29, 394–416. https://doi.org/10.1016/j.rser.2013.08.037

Faria A.L., Andrade A., Soares L., Badia S.B. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. J Neuroeng Rehabil, 13, 1–12. https://doi.org/10.1186/s12984-016-0204-z

Freina L., Ott M. (2015). A Literature Review on Immersive Virtual Reality in Education: State of the Art and Perspectives. Rethink Educ by Leveraging Elearning Pillar Digit Agenda Eur Vol I 1, 133–141. https://doi.org/10.12753/2066-026X-15-020

Hendriks Vettehen P., Wiltink D., Huiskamp M. (2019). Taking the full view: How viewers respond to 360-degree video news. Comput Human Behav, 91, 24–32. https://doi.org/10.1016/j.chb.2018.09.018

Hilfert T., König M. (2016). Low-cost virtual reality environment for engineering and construction. Vis Eng, 4. https://doi.org/10.1186/s40327-015-0031-5

Islam H., Jollands M., Setunge S. (2015). Life cycle assessment and life cycle cost implication of residential buildings - A review. Renew Sustain Energy Rev, 42, 129–140. https://doi.org/10.1016/j.rser.2014.10.006

Jia Wen T., Chin Siong H., Noor Z.Z. (2015). Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy Build, 93, 295–302. https://doi.org/10.1016/j.enbuild.2014.12.002

Katsioloudis P., Jones M., Jovanovic V. (2017). Use of virtual reality head-mounted displays for engineering technology students and implications on spatial visualization. Eng Des Graph J, 81, 11–24. https://doi.org/10.1089/cmb.2009.0231

Kress B.C., Cummings W.J. (2017). 11-1: Invited Paper : Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices. SID Symp Dig Tech Pap, 48, 127–131. https://doi.org/10.1002/sdtp.11586

Lucas J. (2018). Immersive VR in the construction classroom to increase student understanding of sequence, assembly, and space of wood frame construction. J Inf Technol Constr, 23, 179–194.

McManus M.C., Taylor C.M. (2015). The changing nature of life cycle assessment. Biomass and Bioenergy, 82, 13–26. https://doi.org/10.1016/j.biombioe.2015.04.024

Nejat P., Jomehzadeh F., Taheri M.M. (2015). A global review of energy consumption, CO2emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev, 43, 843– 862. https://doi.org/10.1016/j.rser.2014.11.066

Potentials V. (2016). Enterprise Social Networks. https://doi.org/10.1007/978-3-658-12652-0

Pratama L.A., Dossick C.S. (2019). Advances in Informatics and Computing in Civil and Construction Engineering. Springer International Publishing.

Pyung K., Ma T., Amanjot S. (2016). Investigation of Readiness for 4D and 5D BIM Adoption in the Australian Construction Industry. Manag Rev An Int J, 11, 43–64

Rebitzer G., Ekvall T., Frischknecht R. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ Int, 30, 701– 720. https://doi.org/10.1016/j.envint.2003.11.005

Santamarta Martínez J., Mas Domínguez J. (2018). BIM, realidad aumentada y técnicas holográficas aplicadas a la construcción = BIM, increased reality and holographic techniques applied to construction. An Edif, 4, 27. https://doi.org/10.20868/ade.2018.3731

Settgast V., Pirker J., Guetl C. (2016). Entertainment Computing - ICEC 2016. 9926. https://doi.org/10.1007/978-3-319-46100-7

Soust-Verdaguer B., Llatas C., García-Martínez A. (2017). Critical review of bim-based LCA method to buildings. Energy Build, 136, 110–120. https://doi.org/10.1016/j.enbuild.2016.12.009

Velosa J.D., Cobo L., Castillo F. (2018). Online Engineering & Internet of Things, 22. https://doi.org/10.1007/978- 3-319-64352-6

Wang C., Cho Y.K., Kim C. (2015). Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Autom Constr, 56, 1–13. https://doi.org/10.1016/j.autcon.2015.04.001

Wang X., Chong H-Y. (2015). Setting new trends of integrated Building Information Modelling (BIM) for construction industry. Constr Innov, 15, 2–6. https://doi.org/10.1108/CI10-2014-0049

Descargas

Publicado

2019-12-31

Cómo citar

Potencial de las tecnologías inmersivas en el análisis del ciclo de vida de las edificaciones = Potential of immersive technologies in the analysis of the life cycling of buildings. (2019). Anales De Edificación, 5(3), 92-99. https://doi.org/10.20868/ade.2019.4375