Estudio de los efectos de diferentes combinaciones de materiales repelentes de agua y fibras de piassaba (Aphandra natalia) en morteros de cemento = Study of the effects of different combinations of water-repellent agents and supplementary cementing materials on piassaba fibers (Aphandra natalia) in cement mortars.

Cristian Balcázar Arciniega, Eduardo Aguirre Maldonado, Javier Pinilla Melo, Francisco Hernández Oivares


DOI: https://doi.org/10.20868/ade.2020.4500

Texto completo:

PDF (English)

Resumen


Esta investigación trata sobre el desarrollo y caracterización de un nuevo mortero de cemento reforzado con fibras de piassaba. El objetivo es obtener un material con una cantidad reducida de compuestos de hidróxido de calcio en las superficies de las fibras. Se evaluaron fibras no tratadas, fibras tratadas con hidróxido de calcio y fibras tratadas con combinaciones de agentes hidrófobos y materiales cementantes suplementarios (SCM). La morfología de las fibras se estudió mediante microscopía electrónica de barrido (SEM). Las propiedades químicas de SCM se analizaron mediante la técnica de espectroscopia de fluorescencia de rayos X (FRX). Además, se estudió la degradación de las fibras con y sin tratamientos en una solución de hidróxido de sodio. Se discutieron las propiedades físicas (densidad aparente, porosidad abierta, coeficiente de absorción de agua por inmersión y capilaridad) y las propiedades mecánicas del mortero endurecido (resistencia a la flexión y módulo de elasticidad). Después de la prueba de flexión, se retiraron las fibras de los tubos de ensayo y se analizaron mediante microscopía óptica. Los resultados muestran, en primer lugar, que el látex de caucho natural es mejor adherente y tiene mayor compatibilidad con el SCM que el aceite de semilla de lino, y por otro lado, las cenizas de cáscara de arroz (RHA) tienen mayor compatibilidad con el polímero y el aceite. Y finalmente, que el efecto combinado del látex de caucho natural y los finos en polvo de mortero reciclado quemado (BRMF) sobre la superficie de la fibra mejoran el comportamiento del mortero a los 28 días, y pasado ese tiempo se ve comprometida la durabilidad

Abstract

This research is about the development and characterization of a new cement mortar reinforced with piassaba fibers. The aim is to obtain a material with a reduced amount of compounds of calcium hydroxide on the fiber surfaces. Untreated fibers, calcium hydroxide treated fibers, and treated fibers with combinations of hydrophobic agents and supplementary cementitious materials (SCM) were evaluated. Fiber morphology was studied through scanning electron microscopy (SEM). The SCM chemical properties were analyzed through the technique of X-ray fluorescence spectroscopy (FRX). Furthermore, the degradation of the fibers with and without treatments was studied in a sodium hydroxide solution. The physical properties (apparent density, open porosity, water absorption coefficient by immersion and capillary), and the mechanical properties of the hardened mortar (flexural strength and modulus of elasticity) were discussed. After the test of flexing, the fibers were removed from the test tubes and they were analyzed by light microscopy. The results show, first that the natural rubber latex is better adherent and has greater compatibility with the SCM than the flax seed oil, and on the other hand, the rice husk ashes (RHA) have greater compatibility with the polymer and oil. And finally, that the combined effect of natural rubber latex and the burned recycled mortar powder fines (BRMF) on the fiber surface improve the performance of the mortar after 28 days, and after that time the durability is seen compromised.


Palabras clave


Piassaba; Aphandra Natalia; Mortero de cemento; Piassaba; Aphandra Natalia; Cement mortar; Natural rubber latex; Flax seed oil; Rice husk ashes; Silica fume; Burned recycled mortar powder fines

Referencias


Abdullah, A. C., & Lee, C. C. (2017). Effect of Treatments on Properties of Cement-fiber Bricks Utilizing Rice Husk, Corncob and Coconut Coir. Procedia Engineering, 180, 1266–1273. https://doi.org/10.1016/j.proeng.2017.04.288

Abiola, O. S. (2017). 8 - Natural fibre cement composites A2 - Fan, Mizi (F. B. T.-A. H. S. N. F. C. in C. Fu, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-08-100411-1.00008-X

Aguirre-Maldonado, E., & Hernández-Olivares, F. (2017). Study of Fine Mortar Powder from Different Waste Sources for Recycled Concrete Production. In P. Mercader-Moyano (Ed.), Sustainable Development and Renovation in Architecture, Urbanism and Engineering (pp. 253–262). https://doi.org/10.1007/978-3-319-51442-0_21

Alex, J., Dhanalakshmi, J., & Ambedkar, B. (2016). Experimental investigation on rice husk ash as cement replacement on concrete production. Construction and Building Materials, 127, 353–362. https://doi.org/10.1016/j.conbuildmat.2016.09.150

Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. K. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111(July), 158–166. https://doi.org/10.1016/j.measurement.2017.07.045

Aquino, R. C. M. P., Monteiro, S. N., & D’Almeida, J. R. M. (2003). Evaluation of the critical fiber length of piassava (Attalea funifera) fibers using the pullout test. Journal of Materials Science Letters, 22(21), 1495–1497. https://doi.org/10.1023/A:1026147013294

Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 79, 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035

Asociación Española de Normalización y Certificación, A. (2003). UNE-EN 1015–18, Methods of test for mortars for masonry. Part 18. Determination of water absorption coefficient due to capillary action of hardened mortar.

Asociación Española de Normalización y Certificación, A. (2014). UNE 83980, Concrete durability. Test methods. Determination of the water absorption, density and accessible porosity for water in concrete.

ASTM, C. (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. C618-12a.

Balcázar-Arciniega, C., & Hernández-Olivares, F. (2017). Assessment of the Relationship Between Diameter and Tensile Strength of Piassaba (Aphandra natalia) Fibers. In P. Mercader-Moyano (Ed.), Sustainable Development and Renovation in Architecture, Urbanism and Engineering (pp. 227–237). https://doi.org/10.1007/978-3-319-51442-0_19

Balslev, H., Knudsen, T. R., Byg, A., & Kronborg, M. (2010). Traditional Knowledge, Use, and Management of Aphandra natalia (Arecaceae) in Amazonian Peru. Economic Botany, 64(1), 55–67.

Barra, B. N., Santos, S. F., Bergo, P. V. A., Jr, C. A., Ghavami, K., & Jr, H. S. (2015). Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material. Industrial Crops & Products, 77, 691–702. https://doi.org/10.1016/j.indcrop.2015.07.052

Basta, A. H., Sefain, M. Z., & El-Rewainy, I. (2011). Role of some treatments on enhancing the eco-friendly utilization of lignocellulosic wastes in production of cement-fiber bricks. BioResources, 6(2), 1359–1375.

Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Bilba, K., Arsène, M.-A., & Ouensanga, A. (2003). Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cement and Concrete Composites, 25(1), 91–96.

Boll, T., Svenning, J. C., Vormisto, J., Normand, S., Grández, C., & Balslev, H. (2005). Spatial distribution and environmental preferences of the piassaba palm Aphandra natalia (Arecaceae) along the Pastaza and Urituyacu rivers in Peru. Forest Ecology and Management, 213(1–3), 175–183. https://doi.org/10.1016/j.foreco.2005.03.020

Bouzoubaâ, N., & Fournier, B. (2001). Concrete incorporating rice-husk ash: Compressive strength and chloride-ion penetrability. Materials Technology Laboratory. Mtl, 5.

Braga, M., De Brito, J., & Veiga, R. (2012). Incorporation of fine concrete aggregates in mortars. Construction and Building Materials, 36, 960–968. https://doi.org/10.1016/j.conbuildmat.2012.06.031

Butler, L., West, J. S., & Tighe, S. L. (2011). The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cement and Concrete Research, 41(10), 1037–1049. https://doi.org/10.1016/j.cemconres.2011.06.004

Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures/Materiaux et Constructions, 44(1), 205–220. https://doi.org/10.1617/s11527-010-9620-x

Claramunt, J., Ardanuy, M., García-Hortal, J. A., & Filho, R. D. T. (2011). The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 33(5), 586–595. https://doi.org/10.1016/j.cemconcomp.2011.03.003

Corinaldesi, V., & Moriconi, G. (2009). Influence of mineral additions on the performance of 100 % recycled aggregate concrete. Construction and Building Materials, 23(8), 2869–2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004

d’Almeida, J. R. M., Aquino, R. C. M. P., & Monteiro, S. N. (2006a). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing, 37(9), 1473–1479. https://doi.org/10.1016/j.compositesa.2005.03.035

d’Almeida, J. R. M., Aquino, R. C. M. P., & Monteiro, S. N. (2006b). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing, 37(9), 1473–1479. https://doi.org/10.1016/j.compositesa.2005.03.035

Das, M., & Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102(5), 5050–5056.

Dittenber, D. B., & Gangarao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

Elzubair, A., Chagas Bonelli, C. M., Miguez Suarez, J. C., & Biasotto Mano, E. (2007). Morphological, structural, thermal and mechanical characterization of piassava fibers. Journal of Natural Fibers, 4(2), 13–31. https://doi.org/10.1300/J395v04n02_02

EN, B. S. (2009). 12390-5. Testing hardened concrete--Part 5: flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization.

EN, B. S. (2012). 450-1, Fly Ash for Concrete—Definition, Specifications and Conformity Criteria. British Standards Institution.

Ferrara, L., Ferreira, S. R., Krelani, V., Lima, P., Silva, F., & Toledo Filho, R. D. (2017). Cementitious composites reinforced with natural fibres. In Recent Advances on Green Concrete for Structural Purposes (pp. 197–331). Springer.

Fonseca, A. S., Raabe, J., Dias, L. M., Baliza, A. E. R., Costa, T. G., Silva, L. E., … Tonoli, G. H. D. (2018). Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste and Biomass Valorization, 0(0), 1–18. https://doi.org/10.1007/s12649-018-0295-9

Foong, K. Y., Alengaram, U. J., Jumaat, M. Z., & Mo, K. H. (2015). Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 16(1), 59–69. https://doi.org/10.1631/jzus.A1400175

Hussain, T., & Ali, M. (2019). Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Construction and Building Materials, 213, 592–607. https://doi.org/10.1016/j.conbuildmat.2019.04.036

Huu, T., Ogihara, S., Huy, N., & Kobayashi, S. (2011). Composites : Part B Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly ( butylene succinate ) biodegradable composites. Composites Part B, 42(6), 1648–1656. https://doi.org/10.1016/j.compositesb.2011.04.001

Jose, E., Lidiane, M., Garcia, F., Fornari, C., Martínez, F., & Mitsuuchi, M. (2017). A new treatment for coconut fi bers to improve the properties of cement- based composites – Combined e ff ect of natural latex / pozzolanic materials. Sustainable Materials and Technologies, 12(April), 44–51. https://doi.org/10.1016/j.susmat.2017.04.003

Kılınç, A. Ç., Durmuşkahya, C., & Seydibeyoğlu, M. Ö. (2017). 10 - Natural fibers BT - Fiber Technology for Fiber-Reinforced Composites. In Woodhead Publishing Series in Composites Science and Engineering (pp. 209–235). https://doi.org/https://doi.org/10.1016/B978-0-08-101871-2.00010-2

Kronborg, M., Grández, C. A., Ferreira, E., & Balslev, H. (2008). Aphandra natalia (Arecaceae) - A little known source of piassaba fibers from the western amazon. Revista Peruana de Biologia, 15(3), 103–113. https://doi.org/10.15381/rpb.v15i3.3341

Le, H. T. (2015). Behaviour of Rice Husk Ash in Self-Compacting High Performance Concrete. Weimar: Bauhaus-Universität Weimar, FA Finger-Institut Für Baustoffkunde, Professur Werkstoffe Des Bauens.

Le, H. T., Nguyen, S. T., & Ludwig, H. M. (2014). A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash. International Journal of Concrete Structures and Materials, 8(4), 301–307. https://doi.org/10.1007/s40069-014-0078-z

Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., … Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), 514–522. https://doi.org/10.1016/j.compositesa.2007.12.001

Li, M., Zhou, S., & Guo, X. (2017). Effects of alkali-treated bamboo fibers on the morphology and mechanical properties of oil well cement. Construction and Building Materials, 150, 619–625. https://doi.org/10.1016/j.conbuildmat.2017.05.215

MA Ismail, D. (2007). Compressive and tensile strength of natural fibre-reinforced cement base composites. AL-Rafdain Engineering Journal (AREJ), 15(2), 42–51.

Monteiro, Sergio N, Coeli, R., Aquino, M. P., Lopes, F. P. D., Roberto, J., & Almeida, M. (2006). Tenacidade ao Entalhe por Impacto Charpy de Compósitos de Poliéster Reforçados com Fibras de Piaçava. 204–210.

Monteiro, Sergio Neves. (2009). Properties and structure of attalea funifera piassava fibers for composite reinforcement - A critical discussion. Journal of Natural Fibers, 6(2), 191–203. https://doi.org/10.1080/15440470902961128

Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. https://doi.org/10.1016/j.cemconres.2007.10.004

Narud, T. C. H. and H. (n.d.). Strength of Recycled Concrete Made From Crushed Concrete Coarse Aggregate. Concrete International, 5(1).

Nascimento, D. C. O., Ferreira, A. S., Monteiro, S. N., Aquino, R. C. M. P., & Kestur, S. G. (2012). Studies on the characterization of piassava fibers and their epoxy composites. Composites Part A: Applied Science and Manufacturing, 43(3), 353–362. https://doi.org/10.1016/j.compositesa.2011.12.004

Nehdi, M., Duquette, J., & El Damatty, A. (2003). Performance of rice husk ash produced using a new technology as a mineral admixture in concrete. Cement and Concrete Research, 33(8), 1203–1210. https://doi.org/10.1016/S0008-8846(03)00038-3

Nguyen, V. T. (2011). Rice husk ash as a mineral admixture for ultra high performance concrete.

Obilade, I. . (2014). Use Of Rice Husk Ash As Partial Replacement For Cement In Concrete. International Journal of Engineering And Applied Science, 5(04), 11–16.

Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96–108. https://doi.org/10.1016/j.cemconcomp.2016.02.014

Ozerkan, N. G., Ahsan, B., Mansour, S., & Iyengar, S. R. (2013). Mechanical performance and durability of treated palm fiber reinforced mortars. International Journal of Sustainable Built Environment, 2(2), 131–142. https://doi.org/10.1016/j.ijsbe.2014.04.002

Pedersen, H. B. (1996). Production and harvest of fibers from Aphandra natalia (Palmae) in Ecuador. Forest Ecology and Management, 80, 155–161. https://doi.org/10.1016/0378-1127(95)03632-6

Poon, C. S., Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005

Ridzuan, M. J. M., Majid, M. S. A., Afendi, M., Azduwin, K., & Aqmariah, S. N. (2015). The effects of the alkaline treatment ’ s soaking exposure on the tensile strength of Napier fibre. Procedia Manufacturing, 2(February), 353–358. https://doi.org/10.1016/j.promfg.2015.07.062

Rocha, S., Andrade, F. De, Roberto, P., Lima, L., Dias, R., & Filho, T. (2015). Effect of fiber treatments on the sisal fiber properties and fiber – matrix bond in cement based systems. CONSTRUCTION & BUILDING MATERIALS, 101, 730–740. https://doi.org/10.1016/j.conbuildmat.2015.10.120

Rocha, S., Andrade, F. De, Roberto, P., Lima, L., Dias, R., & Filho, T. (2017). Virtual Special Issue Bio Based Building Materials Effect of hornification on the structure , tensile behavior and fiber matrix bond of sisal , jute and curauá fiber cement based composite systems. Construction and Building Materials, 139, 551–561. https://doi.org/10.1016/j.conbuildmat.2016.10.004

Rukzon, S., Chindaprasirt, P., & Mahachai, R. (2009). Effect of grinding on chemical and physical properties of rice husk ash. International Journal of Minerals, Metallurgy and Materials, 16(2), 242–247. https://doi.org/10.1016/S1674-4799(09)60041-8

Sabarish, K. V., Paul, P., Bhuvaneshwari, & Jones, J. (2019). An experimental investigation on properties of sisal fiber used in the concrete. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.07.686

Sawsen, C., Fouzia, K., Mohamed, B., Moussa, G., Crismat, L., Ensicaen, U. M. R., … Cedex, C. (2015). Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials, 79, 229–235. https://doi.org/10.1016/j.conbuildmat.2014.12.091

Sellami, A., Merzoud, M., & Amziane, S. (2013). Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials, 47, 1117–1124. https://doi.org/10.1016/j.conbuildmat.2013.05.073

Shimazaki, K., & Colombo, M. A. (2010). Gelatin / piassava composites treated by electron beam radiation. 303–308.

Soroushian, P., Shah, Z., Won, J. P., & Hsu, J. W. (1994). Durability and moisture sensitivity of recycled wastepaper-fiber-cement composites. Cement and Concrete Composites, 16(2), 115–128. https://doi.org/10.1016/0958-9465(94)90006-X

Suardana, N. P. G., Piao, Y., & Lim, J. K. (2011). Mechanical properties of HEMP fibers and HEMP/PP composites: Effects of chemical surface treatment. Materials Physics and Mechanics, 11(1), 1–8.

Toledo Filho, R. D., Scrivener, K., England, G. L., & Ghavami, K. (2000). Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and Concrete Composites, 22(2), 127–143.

Tonoli, G. H. D., Joaquim, A. P., Arsne, M. A., Bilba, K., & Savastano, H. (2007). Performance and durability of cement based composites reinforced with refined sisal pulp. Materials and Manufacturing Processes, 22(2), 149–156. https://doi.org/10.1080/10426910601062065

Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A. L. A., & Dai Bui, D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035.

Wei, J., & Meyer, C. (2015). Cement and Concrete Research Degradation mechanisms of natural fi ber in the matrix of cement composites. Cement and Concrete Research, 73, 1–16. https://doi.org/10.1016/j.cemconres.2015.02.019

Wei, J., & Meyer, C. (2016). Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber. Cement and Concrete Research, 81, 94–111. https://doi.org/10.1016/j.cemconres.2015.12.001

Wei, J., & Meyer, C. (2017). Degradation of natural fiber in ternary blended cement composites containing metakaolin and montmorillonite. Corrosion Science, 120, 42–60. https://doi.org/10.1016/j.corsci.2016.12.004

Yuzer, N., Cinar, Z., Akoz, F., Biricik, H., Gurkan, Y. Y., Kabay, N., & Kizilkanat, A. B. (2013). Influence of raw rice husk addition on structure and properties of concrete. Construction and Building Materials, 44, 54–62. https://doi.org/10.1016/j.conbuildmat.2013.02.070




Copyright (c) 2021 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.