Propiedades mecánicas de morteros de cemento con adiciones de fibras de carbono, nanotubos de carbono y grafeno = Mechanical properties of cement mortars with additions of carbon fibres, carbon nanotubes and graphene

María Ursúa Goicoechea


doi:10.20868/ade.2017.3674

Abstract


El carbono es uno de los elementos más abundantes de la naturaleza. Su particular estructura hace que pueda tener hasta cinco tipos distintos de alótropos. Durante los últimos años se han producido grandes avances en el estudio de estos materiales de carbono. Las fibras de carbono (CF), los nanotubos de carbono (CNTs) y el grafeno y óxido de grafeno (GO), en función de su estructura y su escala, presentan unas propiedades notablemente diferenciadas. Este estudio pretende comparar y determinar los efectos de estas características en matrices de cemento. Las características de estos materiales son difíciles de transmitir de forma exacta a los compuestos de cemento y hormigones, principalmente por las dificultades que presentan los nanomateriales en su dispersión. Por ello, los datos obtenidos en distintos estudios muestran resultados muy variables. Sin embargo, se ha demostrado que, para mejoras medias, los nanomateriales resultan ser más eficientes.

Abstract

Carbon is one of the most abundant elements of nature. Its particular structure has to have up to five different types of allotropes. During the last years there have been great advances in the study of these carbon materials. Carbon fibers (CF), carbon nanotubes (CNT) and graphene and graphene oxide (GO), depending on their structure and scale, have remarkably different properties. This study aims to compare and determine the effects of these characteristics on cement matrices. The characteristics of these materials are difficult to transmit accurately to concrete and cement compounds, mainly due to the difficulties presented by nanomaterials in their dispersion. Therefore, the data obtained in different studies, results, very variable. However, it has been shown that, for average improvements, nanomaterials are more efficient.


Keywords


fibras de carbono; nanotubos de carbono; grafeno; cemento; Carbon fibers; carbon nanotubes; graphene; cement

References


Borrel Tomás, M. A, Salvador Moya (2015). M. D. Materiales de carbono: del grafito al grafeno. Barcelona: editorial Reverté. ISBN: 978-84-291-4752-0.

Brandt AM (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct; 86(1–3):3–9.

Chen P, Fu X, Chung DDL (1997). ACI Mater J, 94(2):147-55.

Chen SJ et al (2011). Carbon nanotube-cement composites: a retrospect. IES J Part A: Civil Struct Eng; 4(4):254–65.

Chuah, S; Pan, Z; Sanjayan, J. (2014); et al. Nano reinforcedcement and cement composites and new perspective from graphene oxide. Construction and Building Mat., 73, 113-124.

Chung D- (2000). Cement reinforced with short carbon fibers: A multifunctional material. Composites Part B: Engineering, 31 (6-7): 511-26.

Hambach M, Möller H, Neuman T et al (2016). Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (N 100 MPa). Cement and Concrete Research, 89, 80-86.

Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, Chigo Anota (2011). E. First principles calculations of the electronic and chemical properties ofgraphene, graphane, and graphene oxide. J Mol Model; 17:1133–9.

Iijima, S (1980). Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution microscopy. Journal of Crystal Growth, 50(3), 675-683.

Katz A, Bentur A (1994). Cem Concr Res; 24(2): 214-20.

Kroto, H. V; Heath, J. R; O’Brien, S. C; Curl, R. F; and Smalley (1985). R. E. C60: Buck-minsterfullerene. Nature, 318(6042), 162-163.

Kuder K.G., Shah S.P. (2010). Processing of highperformance fiber-reinforced cement- based composites, Constr. Build. Mater. 24; 181–186.

Kuila T, Bose S, Hong CE, Khanra P, Kim NH, Lee JH (2011). Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon; 49: 1033–7.

Li G, Wang P, Zhao X (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon; 43(6): 1239-45.

Li V.C, Mishra D.K., Wu H.C. (1995), Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites, Mater. Struct. 28: 586–595.

Lv, S; Ma, Y; Qiu, C; Sun, T; Liu, J. and Zhou (2013). Q. Effect of graphene oxide nanosheets of microstructure and mechanicalproperties of cement composites. Construction and Building Mat., 49, 121-127.

Makar J., Margeson J., Luh J.(2005). 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, B.C.

Mu B., Cyr M.F., Shah S.P. (2002), Extruded fiber-reinforced composites, Advan. Build. Techno. 1; 239–246.

Novoselov, K. S; Geim, A. K; Morozov, S. V; Jiang, D; Zhang, Y; Dubonos (2004). S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.

Ohama Y, Amano M (1983). Proceedings of the 27th Japan Congress on Materials Research, Society of Material Science, Kyoto, Japan: 187-91.

Ohama Y, Amano M (1985). Endo M. Concrete Int: Design construction, 7(3): 58-62.

Pacheco-Torgal F et al (2013). Targeting HPC with the help of nanoparticles: an overview. Constr Build Mater; 38:365–70.

Potts JR, Dreyer DR, Bielawski C, Ruoff RS (2011). Graphene-based polymer nanocomposites. Polymer; 52: 5–25.

Qian X.Q., Zhou X.M., Mu B., Z.J. Li (2003). Fiber alignment and property direction dependency of FRC extrudate, Cem. Concr. Res. 33, 1575–1581.

Raki L et al (2010). Cement and concrete nanoscience and nanotechnology. Materials; 3(2):918–42.

Sanchez F, Sobolev K (2010). Nanotechnology in concrete – a review. Constr Build Mater; 24(11):2060–71.

Shao Y. X., Shah S.P. (1997). Mechanical properties of PVA fiber reinforced cement composites fabricated by extrusion processing, ACI Mater. J. 94; 555–564.

Shao Y.X., Qiu J., Shah S.P. (2001). Microstructure of extruded cement-bonded fiberboard, Cem. Concr. Res. 31; 1153–1161.

Shen B., Hubler M., Paulino G.H., L.J (2008). Struble, Functionally-graded fiber-reinforced cement composite: processing, microstructure, and properties, Cem. Concr. Compos. 30; 663–673.

Siddique R, Mehta A (2014). Effect of carbon nanotubes on properties of cement mortars. Constr Build Mater; 50:116–29.

Tulliani J.M, Musso S., Lecompte J.P., Ferro G. (2010). In:Proceedings of ICRACM-2010 - 3rd International Conference on Recent Advances in Composite Materials, Limoges (France).

Wu YH, Yu T, Shen ZX (2010). Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications. J Appl Phys; 108(7).

Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al (2010). Graphene and graphene oxide: synthesis, properties and applications. Adv Mater; 22:3906–24.




Copyright (c) 2018 Autor / BY-NC

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.