Criteria for the incorporation of software in architectural education

Luz Angélica Mondragón-del-Ángel, Alexandro Escudero-Nahón, Sandra Luz Canchola-Magdaleno


DOI: https://doi.org/10.20868/abe.2022.3.5027

Texto completo:

PDF (English)

Resumen


The integration of technology has been a constant fact in various areas of architecture. Currently there are innovative tools to be used both in the architectural design process and in professional practice, so its incorporation in architectural education is necessary for the preparation of future professionals. However, the incorporation of technology in architectural education is a process that involves various factors, so this article aimed to analyze the technologies and software that have been incorporated into architectural education to establish criteria in this regard, in addition to identifying the pedagogical approaches used for their incorporation. A systematic review was carried out through three online scientific databases and a quantitative-qualitative analysis was performed. The results suggest that the most incorporated technology and software are Virtual Reality and Rhinoceros respectively. The main reason for integrating a certain technology or software is the need to encourage the adaptation of these to the current demands of the area. Four main criteria used for the incorporations were identified: selection of learning resources, learning design, implementation and degree of success and evaluation. In terms of pedagogical approaches, the constructivist approach was found to be the most used. The incorporation positively influence the teaching-learning process in architecture education, however, there are limitations to their complete satisfaction, so studies on the subject are necessary, especially in specific contexts.

Abstract



Palabras clave


architectural education, software, technology; incorporation; criteria; pedagogical approaches

Referencias


F. S. Moreno, J. F. Higuera, A. D. R. López, Y. A. N. Bernal, y J. O. S. Muñoz, “Análisis de la implementación de metodología BIM en edificaciones de baja complejidad en Colombia, mediante IDM y mapas de procesos”, Bol. Redipe, vol. 9, núm. 11, pp. 165–191, 2020.

S. T. Hossain y K. M. U. A. Bin Zaman, “Introducing BIM in Outcome Based Curriculum in undergraduate program of architecture : Based on students perception and lecture-lab combination”, Soc. Sci. Humanit. Open, vol. 6, núm. 1, p. 100301, ene. 2022, doi: 10.1016/j.ssaho.2022.100301.

A. von Richthofen, K. Knecht, Y. Miao, y R. König, “The ‘Urban Elements’ method for teaching parametric urban design to professionals”, Front. Archit. Res., vol. 7, núm. 4, pp. 573–587, 2018, doi: 10.1016/j.foar.2018.08.002.

Y. Chengdong y L. Shuang, “Establishing the Architectural Talents Cultivating System of Practice and Innovation Ability Under the Background of New Engineering”, Int. Educ. Stud., vol. 12, núm. 9, p. 70, 2019, doi: 10.5539/ies.v12n9p70.

C. E. G. Reyes, I. A. M. Bernal, y A. P. U. Uran, “La competencia digital docente que define al profesor humanista del siglo XXI”, Transdigital, vol. 3, núm. 6, Art. núm. 6, jul. 2022, doi: 10.56162/transdigital136.

S. Mahmoud Ali, “The Role of Visualization Software in Architectural”, Rev. Arquit. Artes Humanidades, vol. 5, núm. 24, pp. 26–43, nov. 2020, doi: 10.21608/mjaf.2020.23435.1496.

M. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas”, Rev. Esp. Cardiol., vol. 74, núm. 9, pp. 790–799, sep. 2021, doi: 10.1016/j.recesp.2021.06.016.

“PRISMA”. https://www.prisma-statement.org/PRISMAStatement/FlowDiagram (consultado el 9 de octubre de 2022).

E. C. Salgado, “El camino histórico de la educación tecnológica en los sistemas educativos de algunos países del mundo y su influencia en la educación tecnológica en Colombia”, Inf. Téc., núm. 76, pp. 108–122, 2012.

G. Pérez, X. F. Rodríguez, J. M. Burgués, M. Solé, y J. Coma, “3D immersive learning in architecture and construction areas = Aprendizaje inmersivo 3D en el campo de la arquitectura y construcción”, Adv. Build. Educ., vol. 4, núm. 2, Art. núm. 2, ago. 2020, doi: 10.20868/abe.2020.2.4460.

S. Aydin y B. Aktaş, “Developing an Integrated VR Infrastructure in Architectural Design Education”, Front. Robot. AI, vol. 7, pp. 495468–495468, 2020, doi: 10.3389/frobt.2020.495468.

B. P. Redyantanu y A. Asri, “Impact of simple virtual technology application in architectural education”, Dimensi Surabaya, vol. 48, núm. 2, pp. 87–96, 2021, doi: 10.9744/dimensi.48.2.87-96.

J. Fromm, J. Radianti, C. Wehking, S. Stieglitz, T. A. Majchrzak, y J. vom Brocke, “More than experience? - On the unique opportunities of virtual reality to afford a holistic experiential learning cycle”, Internet High. Educ., vol. 50, p. 100804, jun. 2021, doi: 10.1016/j.iheduc.2021.100804.

A. K. Bashabsheh, H. H. Alzoubi, y M. Z. Ali, “The application of virtual reality technology in architectural pedagogy for building constructions”, Alex. Eng. J., vol. 58, núm. 2, pp. 713–723, 2019, doi: 10.1016/j.aej.2019.06.002.

E. Şahbaz, “VR-Based Interactive Learning in Architectural Education: A Case on Safranbolu Historical Bathhouse”, Iconarp Int. J. Archit. Plan., vol. 8, núm. 1, pp. 342–356, 2020, doi: 10.15320/ICONARP.2020.116.

J. Benner y J. J. McArthur, “Data-Driven Design as a Vehicle for BIM and Sustainability Education”, Build. Basel, vol. 9, núm. 5, p. 103, 2019, doi: 10.3390/buildings9050103.

B. Bajçinovci y F. Jerliu, “The concept of ‘modelarium’ and its impact on creativity and artistic education”, Rev. Artist. Educ., núm. 13/14, p. 239, 2017, doi: 10.1515/rae-2017-0030.

B. Santos et al., “GIS in Architectural Teaching and Research: Planning and Heritage”, Educ. Sci., vol. 11, núm. 6, p. 307, 2021, doi: 10.3390/educsci11060307.

X. Shi, X. Fang, Z. Chen, T. K. Phillips, y H. Fukuda, “A Didactic Pedagogical Approach toward Sustainable Architectural Education through Robotic Tectonics”, Sustain. Basel Switz., vol. 12, núm. 5, p. 1757, 2020, doi: 10.3390/su12051757.

C. Gyldendahl Jensen, “Collaboration and Dialogue in Virtual Reality”, J. Probl. Based Learn. High. Educ., vol. 5, núm. 1, 2017, doi: 10.5278/ojs.jpblhe.v0i0.1542.

G. Treacy, “Out of ‘touch’? − An experiential pedagogical approach to daylighting in architecture and interior design education”, SHS Web Conf., vol. 64, p. 2010, 2019, doi: 10.1051/shsconf/20196402010.

S. Taimur y M. Onuki, “Design thinking as digital transformative pedagogy in higher sustainability education: Cases from Japan and Germany”, Int. J. Educ. Res., vol. 114, p. 101994, ene. 2022, doi: 10.1016/j.ijer.2022.101994.

R. G. Rubio y A. Cornaro, “Collage digital y TICs, nuevas herramientas para la Historia y Teoría de la Arquitectura”, Jorn. Sobre Innov. Docente En Arquit. JIDA Jornades Sobre Innovació Docent En Arquit. JIDA, núm. 1 7, pp. 240–250, 2019.

H. Wang, “Construction of xAPI-based Multimedia Interaction Technology in Architectural Design Teaching”, Int. J. Emerg. Technol. Learn., vol. 12, núm. 7, p. 101, 2017, doi: 10.3991/ijet.v12i07.7220.

S. Lee, B. Choi, C. C. Maia, J. Park, S. H. Youm, y S. Lee, “Integrating simulation into design: an experiment in pedagogical environments”, Int. J. Technol. Des. Educ., vol. 32, núm. 4, pp. 2257–2277, 2021, doi: 10.1007/s10798-021-09682-6.

Z. Adeel et al., “Developing a comprehensive methodology for evaluating economic impacts of floods in Canada, Mexico and the United States”, Int. J. Disaster Risk Reduct., vol. 50, p. 101861, nov. 2020, doi: 10.1016/j.ijdrr.2020.101861.

A. Iranmanesh y Z. Onur, “Mandatory Virtual Design Studio for All: Exploring the Transformations of Architectural Education amidst the Global Pandemic”, Int. J. Art Des. Educ., vol. 40, núm. 1, pp. 251–267, 2021, doi: 10.1111/jade.12350.

N. V. Danilina y R. Harder, “‘Mobility game’: interactive technology for urban planning education”, IOP Conf. Ser. Mater. Sci. Eng., vol. 775, núm. 1, p. 12009, 2020, doi: 10.1088/1757-899X/775/1/012009.

J. M. Krüger, K. Palzer, y D. Bodemer, “Learning with augmented reality: Impact of dimensionality and spatial abilities”, Comput. Educ. Open, vol. 3, p. 100065, dic. 2022, doi: 10.1016/j.caeo.2021.100065.

H. Boumaraf y M. İnceoğlu, “Integrating 3D Printing Technologies into Architectural Education as Design Tools”, Emerg. Sci. J., vol. 4, núm. 2, pp. 73–81, 2020, doi: 10.28991/esj-2020-01211.

F. Valls, E. Redondo, D. Fonseca, R. Torres-Kompen, S. Villagrasa, y N. Martí, “Urban data and urban design: A data mining approach to architecture education”, Telemat. Inform., vol. 35, núm. 4, pp. 1039–1052, jul. 2018, doi: 10.1016/j.tele.2017.09.015.

T. Z y H. Flores Hole, “Teorías del aprendizaje y la instrucción: el diseño de materiales didácticos informáticos”, Educere Rev. Venez. Educ. ISSN 1316-4910 No 45 2009 Pags 317-329, jun. 2009.

I. Gil-Jaurena, D. Figaredo, A. Izquierdo-Montero, y J. Morentin-Encina, “Análisis de cursos online y a distancia desde el modelo ‘Community of Inquiry’”, 2018, pp. 346–356.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2023 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.