Adaptando el Lean Project Delivery System a la elaboración o actualización de un plan de estudios de ingeniería civil incorporando BIM, Realidad Virtual y Fotogrametría = Adapting Lean Project Delivery System to the elaboration or updating of the Civil Engineering Undergraduate Degree Plan, incorporating BIM, Virtual Reality and Photogrammetry

Xavier Brioso, Diego Fuentes Hurtado


DOI: https://doi.org/10.20868/abe.2020.3.4509

Texto completo:

PDF

Resumen



El Lean Project Delivery System (LPDS) es un sistema que implementa principios y herramientas Lean en todo el ciclo de vida de un proyecto de construcción. El LPDS es adaptativo pues es flexible para especificar las entradas y salidas de los procesos y tiene la libertad de elegir herramientas, técnicas y tecnologías acorde a las últimas tendencias. El propósito principal de este artículo es presentar un marco de generación de valor a través de la adaptación del LPDS al proceso de revisión de un plan de estudios. Este trabajo adapta el modelo del LPDS al proyecto de elaboración o actualización de un plan de estudios de la especialidad de ingeniería civil, incorporando BIM, realidad virtual y fotogrametría a lo largo de las asignaturas del área de gestión de la construcción. Se incluyen herramientas blandas y competencias tecnológicas que potencian la empleabilidad del egresado. Como estudio de caso se presenta la aplicación del modelo en la Pontificia Universidad Católica del Perú.

ABSTRACT


Lean Project Delivery System (LPDS) is a system that implements Lean principles and tools throughout the life cycle of a construction project. The LPDS is adaptive because it's flexible enough to specify the inputs and outputs of each process and allows the freedom to choose tools, techniques and technologies according to the latest trends. The main purpose of this paper is to present a value-generation framework through the adaptation of the LPDS to the Undergraduate Degree Plan process. This work adapts the LPDS model to the current project, elaboration or updating of the civil engineering curriculum, incorporating BIM, virtual reality and photogrammetry in the construction management area subjects. Soft tools and technological skills are included, and as such, enhancing the employability of the undergraduate. As a case study, the application of the model is presented at the Pontifical Catholic University of Peru.


Palabras clave


Lean Project Delivery System; Grado de Ingeniería Civil; Enseñanza; Innovación educativa; BIM; Realidad Virtual; Fotogrametría; Lean Project Delivery System; Civil Engineering Degree; Teaching; Educational innovation; BIM; Virtual Reality; Photogrammetry

Referencias


Ballard, G. (2000). Lean Project Delivery System. Lean Construction Institute. White Paper-8 (Revision 1). Lean Construction Institute.

Forbes, L. and Ahmed, S. (2020). Lean Project Delivery and Integrated Practices in Modern Construction. (2020) Routledge, 2th Ed.

Koskela, L. (2000). An Exploration towards a Production Theory and its Application to Construction. PhD Dissertation, VTT Building Technology, Espoo, Finland.

A Guide to the Project Management Body of Knowledge (PMBOK® Guide) (2017). Project Management Institute. Newtown Square, PA, USA: Project Management Institute, 6th Ed.

Brioso, X., Humero, A., Murguia, D., Corrales, J. and Aranda, J. (2018). Using Post-Occupancy Evaluation of Housing Projects to Generate Value for Municipal Governments. Alexandria Engineering Journal, 57 (2), pp. 885-896.

Brioso, X. (2015). Integrating ISO 21500 Guidance on Project Management, Lean Construction, and PMBOK. Procedia Engineering, 123 (2015), pp. 76 – 84.

Brioso, X. (2015), El Análisis de la Construcción sin Pérdidas (Lean Construction) y su relación con el Project & Construction Management: Propuesta de Regulación en España y su Inclusión en la Ley de la Ordenación de la Edificación. PhD thesis. Technical University of Madrid, Spain, 2015.

Brioso, X., Aguilar, R. and Calderon-Hernandez, C. (2019). Synergies Between Lean Construction and Management of Heritage Structures and Conservation Strategies - A General Overview. RILEM Bookseries, Volume 18, 2019, Pages 2142-2149.

Alsaggaf, A. & Parrish, K. (2016). A Proposed Lean Project Delivery Process for Preservation Projects in Jeddah City, Saudi Arabia. 24th Annual Conference of the International Group for Lean Construction. Boston, Massachusetts, USA, 20-22 Jul 2016.

Ballard, G., (2008). The Lean Project Delivery System: An Update, Lean Construction Journal, 2008 Issue, pp. 1-19.

Smith, R., Mossman, A. & Emmitt, S. (2011). Lean and Integrated Project Delivery. Lean Construction Journal, 2011 Issue, pp. 1-16.

Devkar, G., Trivedi, J. & Pandit, D. (2019). Teaching Target Value Design: A Simulation. 27th Annual Conference of the International Group for Lean Construction (IGLC). Dublin, Ireland, 3-5 Jul 2019. pp 479-490.

Ramalingam, S. (2018), Mapping of BIM Process for Teaching Lean. 26th Annual Conference of the International Group for Lean Construction. Chennai, India, 18-20 Jul 2018. pp 1291-1301.

Brioso, X., Humero, A. & Calampa, S. (2016). Comparing Point-to-Point Precedence Relations and Location-Based Management System in Last Planner System: A Housing Project of Highly Repetitive Processes Case Study. Procedia Engineering, 164 (2016), pp. 12–19.

International Standards Office (2018). ISO 19650-1:2018. Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) — Information management using building information modelling — Part 1: Concepts and principles. Geneva: ISO.

Sacks, R., Eastman, C., Lee, G., Teicholz, P. (2018). BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. (2018) Wiley.

Murguia, D., Brioso, X., Ruiz-Conejo, L. and Fernandez, L. (2017). Process Integration Framework for the Design Phase of a Residential Building. Procedia Engineering, 196, pp. 462-469.

Brioso, X., Murguía, D. & Urbina, A. (2017). Comparing three scheduling methods using BIM models in the Last Planner System. Organization, Technology and Management in Construction: an International Journal, 9 (2017), Issue 1, pp. 1604–1614.

Sacks, R., Koskela, L., Dave, B., and Owen, R. (2010). Interaction of Lean and Building Information Modeling in Construction. Journal of Construction Engineering and Management, 2010, 136(9): 968-980.

Pontificia Universidad Católica del Perú (2020). Disponible en: https://www.pucp.edu.pe/documento/plan-estrategico-institucional-2018-2022/ Visita 19/04/20.

Paes, D., Arantes, E., Irizarry, J. (2017) Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303.

Wang C, Cho YK (2015). Smart scanning and near real-time 3D surface modeling of dynamic construction equipment from a point cloud. Automation in Construction, 49, 239–249

Mills J, Barber D (2004). Geomatics techniques for structural surveying. J Surv Eng 130 (2), 56–64.

Oreni D, Brumana R, Della Torre S, Banfi F, Barazzetti L, Previtali M (2014) Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-5:267–273.

Brioso, X., Calderon-Hernandez, C., Aguilar, R. and Pando, M.A. (2019). Preliminary Methodology for the Integration of Lean Construction, BIM and Virtual Reality in the Planning Phase of Structural Intervention in Heritage Structures. RILEM Bookseries, Volume 18, 2019, Pages 484-492.

Lozano-Díez, R.V., Oscar López-Zaldívar, O., Herrero del Cura, S. y Mayor Lobo, P.L. (2018). Primeras experiencias en formación reglada del entorno BIM: El caso del Grado en Edificación de la Universidad Politécnica de Madrid. ABE (Advances in Building Education / Innovación Educativa en la Edificación), 2 (1), pp. 109-121.

Brioso, X., and Calderon-Hernandez, C. (2019). Improving the Scoring System with the Choosing by Advantages (CBA) elements to evaluate Construction-Flows using BIM and Lean Construction. ABE (Advances in Building Education / Innovación Educativa en la Edificación), 3 (2), pp. 9-34.

Vázquer Rodríguez, J., Otero-Chans, D., Estévez-Cimadevila J. (2016). Incorporación de herramientas paramétricas para la generación y análisis del modelo virtual del edificio en la formación de los estudiantes de Arquitectura. Spanish Journal of Building Information Modeling, nº 16, p. 22-27.

Piña-Ramírez, C., Varela-Lujan, S., Aguilera-Benito, P. y Vidales-Barriguete, A. (2017). Aprendizaje de los roles de los agentes BIM en la organización de proyectos. ABE (Advances in Building Education / Innovación Educativa en la Edificación), 1 (1), pp. 47-55.

Pontificia Universidad Católica del Perú (2020). Disponible en: https://facultad.pucp.edu.pe/ingenieria/carreras/ingenieria-civil/plan-de-estudios/ Visita 25/06/20.

Autodesk Revit (2020). Disponible en: https://www.autodesk.com/products/revit/overview Visita 24/05/20.

Matterport (2020). Disponible en: https://matterport.com/es Visita 12/05/20.

Delphin Express BIM 360 (2020). Disponible en: https://itcemsolucionesintegrales.com/delphin-express-bim-2021-r-2-0/ Visita 18/06/20.

Autodesk Revit MEP (2020). Disponible en: https://www.autodesk.com/products/revit/mep?plc=RVT&term=1-YEAR&support=ADVANCED&quantity=1# Visita 09/06/20.

MS Project (2020). Disponible en:https://www.microsoft.com/es-ww/microsoft-365/project/project-management-software?market=pe Visita 11/06/20.

Navisworks Manage (2020). Disponible en: https://www.autodesk.com/products/navisworks/overview?plc=NAVSIM&term=1-YEAR&support=ADVANCED&quantity=1 Visita 20/06/20.

Construsoft-Vico Office (2020). Disponible: https://www.construsoft.com/bim-software/vico-office Visita 28/06/20.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.