Describing the urban form: morphometric indexes = Describiendo la forma urbana: índices morfométricos

Authors

  • Nicolás Ramírez Department of Engineering Systems and Management. Masdar Institute
  • Afshin Afshari Department of Engineering Systems and Management. Masdar Institute
  • Julián García Departmento de Construcciones Arquiitectónicas y su Control. Universidad Politécnica de Madrid http://orcid.org/0000-0002-9924-7593

DOI:

https://doi.org/10.20868/bma.2017.2.3554

Keywords:

Morphometric indexes, Aerodynamic parameters, City, Urban form, Índices morfométricos, Parámetros aerodinámicos, Ciudad, Forma urbana

Abstract

Abstract

Characterizing the urban form of cities from an aerodynamic point of view is essential to forecast pollutant dispersion, to implement and understand natural ventilation strategies or to enhance outdoor thermal comfort and pedestrian wind environment, to name a few. Nonetheless, accurate results make use, normally, of Computational Fluid Dynamic (CFD) simulations, wind tunnel experiments and/or field measurements. However, these methodologies are expensive, time consuming and sometimes impossible to carry out. Therefore, simplified ways of characterizing a city aerodynamically must be put forward to bridge this gap. Two of the most common aerodynamic parameters, namely z0 (roughness length) and zd (zero displacement length), can be related to the morphometry of the urban shape through simple morphometric indexes. This paper explores and analyses these indexes, and suggests an alternative and improved definition that might achieve more accurate results.

Resumen

Caracterizar la forma urbana de las ciudades desde un punto de vista aerodinámico es esencial para poder prever la dispersión de contaminantes, para implementar y comprender las estrategias de ventilación natural o para mejorar el control térmico en exteriores o el ambiente de viento peatonal, por citar sólo algunos casos. Para cualquiera de estos análisis, si se desea disponer de valores de cierta precisión es habitual emplear simulaciones mediante dinámica de fluidos computacional (CFD), experimentos en túnel de viento y/o tomas de datos de campo. Estos métodos, sin embargo, implican una inversión económica y temporal que en ocasiones no es posible realizar. El empleo de métodos simplificados para caracterizar la ciudad desde un punto de vista aerodinámico puede ayudar a hacer más sencillos estos procesos. Dos de los parámetros aerodinámicos más habituales, z0 (rugosidad superficial) y zd (longitud desplazamiento cero) pueden ponerse en relación con la morfometría de la forma urbana a través de índices morfométricos simples. Esta comunicación explora y analiza estos índices, y sugiere una definición alternativa y mejorada que puede posibilitar resultados más ajustados.

Downloads

Download data is not yet available.

References

R. E. Britter and S. R. Hanna, "Flow and disperssion in urban areas," Annual Review of Fluid Mechanics, vol. 35, pp. 469-496, 2003.

A. Martilli and J. L. Santiago, "CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties," Boundary-Layer Meteorology, vol. 122, pp. 635-654, 2007.

J. L. Santiago, A. Martilli, and F. Martín, "CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements," Boundary-Layer Meteorology, vol. 122, pp. 609-634, 2007.

O. Coceal, T. G. Thomas, I. P. Castro, and S. E. Belcher, "Mean flow and turbulence statistics over groups of urban-like cubical obstacles," Boundary-Layer Meteorology, vol. 121, pp. 491-519, 2006.

Z. T. Xie, O. Coceal, and I. P. Castro, "Large-Eddy simulation of flows overrandom urban-like obstacles," Boundary-Layer Meteorology, vol. 129, pp. 1-23, 2008.

R. Ramponi, B. Blocken, L. B. de Coo, and W. D. Janssen, "CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths," Building and Environment, vol. 92, pp. 152-166, 2015.

Y. Cheng, F. S. Lien, E. Yee, and R. Sinclair, "A comparison of large Eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes," Journal of Wind Engineering and Industrial Aerodynamics, vol. 91, pp. 1301-1328, 2003.

R. N. Meroney, M. Pavageau, S. Rafailidis, and M. Schatzmann, "Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons," Journal of Wind Engineering and Industrial Aerodynamics, vol. 62, pp.37-56, 1996.

P. Kastner-Klein and E. J. Plate, "Wind-tunnel study of concentration fields in street canyons," Atmospheric Environment, vol. 33, pp. 3973-3979, 1999.

F. Pascheke, B. Leitl, and M. Schatzmann, "Dispersion of traffic pollutants in street canyons - Systematic wind tunnel study to evaluate a field tracer experiment," 5th International Conference on Urban Air Quality, p. 4, 2005.

H. Cheng and I. P. Castro, "Near-wall flow development after a step change in surface roughness," Boundary-Layer Meteorology, vol. 105, pp. 411-432, 2002.

H. Cheng and I. P. Castro, "Near wall flow over urban-like roughness," Boundary-Layer Meteorology, vol. 104, pp. 229-259, 2002.

G. Vachon, P. Louka, J. M. Rosant, P. Mestayer, and J. F. Sini, "Measurements of traffic-induced turbulence within a street canyon during the Nantes '99 experiment," Third International Conference on Urban Air Quality, 2001.

C. S. B. Grimmond and T. R. Oke, "Aerodynamic properties of urban areas derived from analysis of surface form," Journal of Applied Meteorology, vol. 38, pp. 1262-1292, 1999.

G. Liu, J. Sun, and W. Jiang, "Observational verification of urban surface roughness parameters derived from morphological models," vol. 16, pp. 205-213, 2009.

M. Schatzmann and B. Leitl, "Issues with validation of urban flow and dispersion CFD models," Journal of Wind Engineering and Industrial Aerodynamics, vol. 99, pp. 169-186, 2011.

M. Schatzmann, S. Rafailidis, and M. Pavageau, "Some remarks on the validation of small-scale dispersion models with field and laboratory data," Journal of Wind Engineering and Industrial Aerodynamics, vol. 67, pp. 885-893, 1997.

T. van Hooff and B. Blocken, "Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium: Possibilities and limitations for CFD validation," Journal of Wind Engineering and Industrial Aerodynamics, vol. 104, pp. 330-341, 2012.

M. Bottema, "A method for optimisation of wind discomfort criteria," vol. 35, pp. 1-18, 2000.

R. W. Macdonald, R. F. Griffiths, and D. J. Hall, "An improved method for the estimation of surface roughness of obstacle arrays," Atmospheric Environment, vol. 32, pp. 1857-1864, 1998.

M. R. Raupach, "Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index," Boundary-Layer Meteorology, vol. 71, pp. 211-216, 1994.

Downloads

Published

2017-08-04

How to Cite

Describing the urban form: morphometric indexes = Describiendo la forma urbana: índices morfométricos. (2017). Building & Management, 1(2), 53-56. https://doi.org/10.20868/bma.2017.2.3554