Influencia del Sistema de Puesta a Tierra en la Compatibilidad Electromagnética en Edificios Hospitalarios = Influence of Grounding Systems in the Electromagnetic Compatibility in Hospital Buildings

Esteban P. Jose Domínguez González Seco, José Manuel Gómez Pulido, David Gómez Gómez, Igor Aguirrebeña Alcelay


DOI: https://doi.org/10.20868/ade.2019.4043

Texto completo:

PDF

Resumen


El estudio desarrolla un análisis de la compatibilidad electromagnética en los recintos hospitalarios. En el mismo se trata de establecer las características del diseño inicial de la red eléctrica que permiten obtener un contexto electromagnético óptimo en el funcionamiento de los sistemas hospitalarios. En el trabajo se aborda el análisis de los distintos regímenes de neutro de las instalaciones de baja tension, con el objeto de establecer un estándar justificado que facilite la operación y funcionamiento de la instalación eléctrica y de comunicaciones en los sistemas hospitalarios. El análisis de los datos recabados permite proponer la utilización del régimen de neutro TN-S. Finalmente, se plantea para un futuro desarrollo normativo y de diseño la utilización del régimen de neutro TN-S como medida correctora para mejorar el funcionamiento electromagnético de centros hospitalarios.

Abstract

This research analyzes the electromagnetic compatibility in hospital buildings and tries to stablish the initial design features of its low voltage systems for the better electromagnetic context. The present study analyzes different neutral regimes in low voltage networks and proposes a justified standard for electrical and communication networks which allows an optimal running in hospital systems. Based on the data and outcomings it is proposed a TN-S grounding system. It is proposed, for a future regulation development, the use of the TN-S grounding system for a better electromagnetic operation in hospital buildings. 


Referencias


Aliman, O., & Musirin, I. (2013). Overcurrent relays coordination for commercial building. Paper presented at the 608-612.

Cátedra, M. F., & Pérez-Arriaga, J. (1999). Cell planning for wireless communications. Boston, Mass [u.a.]: Artech House.

Conexión de los neutros de los transformadores en la red de unión fenosa distribución. Unión Fenosa.

Dawalibi, F. P., Wei Xiong, & Jinxi Ma. (1995). Transient performance of substation structures and associated grounding systems. IEEE Transactions on IndustryApplications, 31(3), 520-527. doi:10.1109/28.382112.

Denny, H. W. (1983). Grounding for the control of EMI (1. ed. ed.). Gainesville, Va: Don White Consultants.

Distribución del neutro en redes de MT de distribución y protecciones asociadas. Unión Fenosa.

Gómez, J. M., Cejudo, S., González, I., & Cátedra, F. (2007). Application of high frequencies techniques for location systems.

Grcev, L. (2001). Modelling of grounding systems for better protection of communication installations against effects from electric power system and lightning. Paper presented at the 461-468. doi:20010637.

Grcev, L. D., & Heimbach, M. (1997). Frequency dependent and transient characteristics of substation grounding systems. IEEE Transactions on Power Delivery, 12(1), 172-178. doi:10.1109/61.568238.

Grounding and bonding in command, control, communications, computer, intelligence, surveillance, and reconnaissance (C4ISR) facilities(2002). . Washington, D.C: Headquarters, Dept. of the Army.

Haijun Liu, Mitolo, M., & Jun Qiu. (2014). Ground-fault loop impedance calculations in low-voltage single-phase systems. IEEE Transactions on Industry Applications, 50(2), 1331-1337. doi:10.1109/TIA.2013.2272285.

Hassan, A. M., Abdallah, E. N., & Abbasy, N. H. (Mar 2012). Design and simulation of interconnected A.C substation grounding grid in oil & gas industries. Paper presented at the 188-193. doi:10.1109/JEC-ECC.2012.6186981.

IARC Official Publication. (2002). Non-ionizing radiation, part 1 : Static and extremely low-frequency (ELF) electric and magnetic fields. Albany: World Health Organization.

IEEE std 1100-2005 (revision of IEEE std 1100-1999): IEEE recommended practice for powering and grounding electronic equipment (2006). IEEE.

IEEE std C57.32-2015 (revision of IEEE std 32-1972): IEEE standard for requirements, terminology, and test procedures for neutral grounding devices (2016). IEEE.

Jinxi Ma, & Dawalibi, F. P. (2009). Computerized analysis of grounding plates in multilayer soils. IEEE Transactions on Power Delivery, 24(2), 650-655.

Kaemarungsi, K. (2006). Distribution of WLAN received signal strength indication for indoor location determination. Paper presented at the 6. doi:10.1109/ISWPC.2006.1613601.

Kaemarungsi, K., & Krishnamurthy, P. (2004). Properties of indoor received signal strength for WLAN location fingerprinting. Paper presented at the 14-23. doi:10.1109/MOBIQ.2004.1331706.

Kirar, M. K., & Aginhotri, G. (2012). Cable sizing and effects of cable length on dynamic performance of induction motor. Paper presented at the 1-6. doi:10.1109/PowerI.2012.6479482.

Li, Y. X., Dawalibi, F. P., & Ma, J. X. (2012). Grounding system analysis and design considerations for large hydroelectric power plant. Advanced Materials Research, 516-517, 1359-1366.

Liu, Y. (2004). Transient response of grounding systems caused by lightning: Modelling and experiments. Retrieved from https://search.proquest.com/docview/305050057.

Ma, J., & Dawalibi, F. P. (1998). Modern computational methods for the design and analysis of power system grounding. Paper presented at the , 1 126 vol.1. doi:10.1109/ICPST.1998.728937.

Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría UNESA.

Mitolo, M., Freschi, F., Haijun Liu, & Tartaglia, M. (2013). Latent potential differences between exposed-conductive-parts under ground-fault conditions in low-voltage systems. Paper presented at the 137-143. doi:10.1109/ESW.2013.6509014.

Ramos González, V. (2005). Compatibilidad electromagnética y seguridad en aplicaciones de redes personales sin hilos para biotelemetría. Retrieved from http://hdl.handle.net/10017/805

Saez de Adana, F., Gutierrez Blanco, O., Gonzalez Diego, I., Perez Arriaga, J., & Catedra, M. F. (2000). Propagation model based on ray tracing for the design of personal communication systems in indoor environments. IEEE Transactions on Vehicular Technology, 49(6), 2105-2112.

Vyas, K. A., & Jamnani, J. G. (2011). Optimal design and development of software for design of substation grounding system. Paper presented at the 1-7. doi:10.1109/NUiConE.2011.6153288.




Copyright (c) 2019 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.