Mejora del desempeño térmico del muro trombe a través de un acristalamiento electrocrómico con conmutación programada = Improving the thermal performance of the trombe wall through programmed switching electrochromic glazing

Arturo Martínez, Gloria Pérez, David Levy, Josep María Adell, Jorge Gallego-Sanchez-Torija, Fernando Martín-Consuegra


DOI: https://doi.org/10.20868/ade.2022.5020

Texto completo:

PDF

Resumen


El gasto energético que representa la climatización de edificios a nivel mundial hace necesaria la adopción y adaptación de técnicas pasivas para reducir las demandas de calefacción y refrigeración. Diversos estudios han comprobado los beneficios térmicos y energéticos del muro Trombe (MT), sobre todo en climas continentales. No obstante, este sistema genera sobrecalentamiento en climas con veranos cálidos. Mas allá del uso de sistemas tradicionales, esta técnica puede mejorar su capacidad de climatización en este tipo de climas a través de materiales cromogénicos como los vidrios electrocrómicos (EC). En este estudio se simula la rehabilitación energética de una habitación en un edificio de Madrid mediante un MT convencional (MTC) y uno que incluye un vidrio EC (MTEC), cuya conmutación fue programada para mediar las condiciones climáticas en un periodo con mayor contraste diario de temperatura. Los resultados muestran que el MTEC proporciona temperaturas interiores más confortables.

Abstract

The energy cost of air-conditioning buildings worldwide makes it necessary to adopt and adapt passive techniques to reduce heating and cooling demands. Several studies have proven the thermal and energy benefits of the Trombe wall (TM), especially in continental climates. However, this system generates overheating in climates with hot summers. Beyond the use of traditional systems, this technique can improve its climate control capacity in such climates through the use of chromogenic materials such as electrochromic glass (EC). This study simulates the energy rehabilitation of a room in a building in Madrid using a conventional MTC (MTC) and one that includes an EC glass (MTEC), whose switching was programmed to mediate the climatic conditions in a period with greater daily temperature contrast. The results show that the MTEC provides more comfortable indoor temperatures.


Palabras clave


Muro Trombe; Vidrio electrocrómico; Conmutación programada; Rehabilitación energética; Trombe wall; Electrochromic glass; Programmed switching; Energy refurbishment

Referencias


C.Alonso Ruiz-Rivas, Rehabilitación energética de fachadas:Propuesta metodológica para la evaluación de solucionesinnovadoras, basándose en el diagnóstico de viviendassociales construidas entre 1940 y 1980, UniversidadPolitécnica de Madrid, 2015.http://oa.upm.es/id/eprint/39249/contents.

A.Beck, T. Hoffmann, W. Korner, J. Fricke, Thermochromicgels for control of insolation, 1993.

E.Bellos, C. Tzivanidis, E. Zisopoulou, G. Mitsopoulos, K.A.Antonopoulos, An innovative Trombe wall as a passiveheating system for a building in Athens—A comparisonwith the conventional Trombe wall and the insulated wall,Energy Build. 133 (2016) 754–769. https://doi.org/10.1016/j.enbuild.2016.10.035.

P.Bevilacqua, F. Benevento, R. Bruno, N. Arcuri, Are Trombewalls suitable passive systems for the reduction of the yearly building energy requirements?, Energy. 185 (2019) 554–566.https://doi.org/10.1016/j.energy.2019.07.003.

M.Dabaieh, A. Elbably, Ventilated trombe wall as a passivesolar heating and cooling retrofitting approach ; a low-techdesign for off-grid settlements in semi-arid climates, Sol.Energy. 122 (2015) 820–833.https://doi.org/http://dx.doi.org/10.1016/j.solener.2015.10.005.

J.Dong, Z. Chen, L. Zhang, Y. Cheng, S. Sun, J. Jie,Experimental investigation on the heating performance of anovel designed trombe wall, Energy. 168 (2019) 728–736.https://doi.org/10.1016/j.energy.2018.11.125.

Energy Plus, Energy Plus https://energyplus.net/ (acceso Marzo 15, 2021).

Z.Hu, W. He, J. Ji, S. Zhang, A review on the application ofTrombe wall system in buildings, Renew. Sustain. EnergyRev. 70 (2017) 976–987.https://doi.org/10.1016/j.rser.2016.12.003.

Instituto de Ciencias de la Construcción Eduardo Torroja, Catálogo de Elementos Constructivos del CTE, Madrid, 2010. http://itec.cat/cec/.

F.Martín-Consuegra, C. Alonso, G. Perez, A. Guerrero, M.J.Gavira, B. Frutos, I. Oteiza, Design and Optimisation of aThermochromic Trombe Wall, in: Int. Conf. Sustain. Mater.Syst. Struct. (SMSS 2019) Energy Effic. Build. Des. Legis.,Rovinj, Croatia, 2019: pp. 42–50.

G.Pérez, V.R. Allegro, M. Corroto, A. Pons, A. Guerrero,Smart reversible thermochromic mortar for improvement ofenergy efficiency in buildings, Constr. Build. Mater. 186(2018) 884–891.https://doi.org/10.1016/j.conbuildmat.2018.07.246.

M.Pittaluga, The electrochromic wall, Energy Build. 66 (2013)49–56. https://doi.org/10.1016/j.enbuild.2013.07.028.

M.Pittaluga, Electrochromic glazing and walls for reducingbuilding cooling needs, Elsevier Ltd., 2015.https://doi.org/10.1016/B978-1-78242-380-5.00017-0.

R.Tällberg, B.P. Jelle, R. Loonen, T. Gao, M. Hamdy,Comparison of the energy saving potential of adaptive andcontrollable smart windows: A state-of-the-art review andsimulation studies of thermochromic, photochromic andelectrochromic technologies, Sol. Energy Mater. Sol. Cells.(2019). https://doi.org/10.1016/j.solmat.2019.02.041.

G.Zhou, M. Pang, Experimental investigations on thermalperformance of phase change material - Trombe wall system enhanced by delta winglet vortex generators, Energy. 93(2015) 758–769.https://doi.org/10.1016/j.energy.2015.09.096.




Copyright (c) 2023 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.