Análisis estructural por elementos finitos del colapso del puente Arturo Sandez en Girón, Ecuador = Finite element structural analysis of the Arturo Sandez bridge collapse in Giron, Ecuador

Leonardo Fernández-Galarza, David Cajamarca-Zúñiga


DOI: https://doi.org/10.20868/abe.2023.3.5202

Texto completo:

PDF

Resumen


La socavación de las cimentaciones puede causar fallas estructurales con graves consecuencias. El proceso de socavación tiene un carácter progresivo y, dependiendo de las condiciones en las que se desarrolla, los efectos de este proceso podrían ser controlados oportunamente para evitar el colapso de las estructuras. Este artículo presenta los resultados de la modelización numérica mediante elementos finitos del colapso del puente de la calle Arturo Sandez en el cantón Girón, Ecuador. El análisis se realizó en un modelo de elementos finitos sólidos en el programa Midas Civil. El estudio del estado tenso-deformacional del puente se realizó en diferentes etapas de socavación y los resultados obtenidos demuestran que, si durante una valoración física se detectan daños en una estructura, entonces es necesario realizar una evaluación numérica de su estado tenso-deformacional. Esta acción permitirá pronosticar la evolución del estado tenso-deformacional de la estructura y tomar las medidas correctivas de manera técnica y oportuna para prevenir el colapso. Este estudio muestra que la socavación inicialmente detectada casi un año antes del colapso constituía un 5.86% de la superficie de cimentación, el inicio del fallo del estribo izquierdo se produjo cuando el área de la socavación alcanzó el 25.48%, y el fallo irreversible de la estructura se produjo cuando la socavación alcanzó un el 39.41% de la superficie de cimentación. Los resultados expuestos demuestran que una modelización numérica pudo prevenir el colapso del puente y permitir tomar las medidas necesarias de mitigación.

Abstract

Foundation scour can cause structural failure with serious consequences. The scour process has a progressive character and, depending on the conditions under which it develops, the effects of this process can be controlled in a timely manner to avoid the collapse of structures. This paper presents the results of the numerical modelling of the collapse of the Arturo Sandez bridge in Girón, Ecuador. The analysis was performed in a solid finite element model in the Midas Civil software. The study of the stress-strain state of the bridge was carried out at different stages of scour and the results obtained show that, if damage to a structure is detected during a physical assessment, it is necessary to carry out a numerical evaluation of its stress-strain state. This action will allow the stress-strain state of the structure to be predicted and corrective measures to be taken in a technical and timely manner to prevent collapse. This study shows that the scour initially detected almost one year before the collapse constituted 5.86% of the foundation area, the onset of failure of the left abutment occurred when the scour area reached 25.48%, and the irreversible failure of the structure occurred when the scour reached an area of 39.41%. The above results demonstrate that numerical modelling was able to prevent the collapse of the bridge and allow the necessary mitigation measures to be implemented.


Palabras clave


Colapso progresivo; Modelo numérico; socavación; estribo; comportamiento tenso-deformacional; MIDAS Civil; Progressive collapse; Numerical model; scour; abutment; stress-strain behaviour

Referencias


Rymsza, J. (2020). Causes of the Morandi viaduct disaster in Genoa as a contribution to the design of pre-stressed structures. Roads and Bridges - Drogi i Mosty, 19[1], 5–25. https://doi.org/10.7409//rabdim.020.001

Xu, X., Wang, J., Wei, J., Taciroglu, E., Dai, F., and Peng, W. (2018). A forensic investigation of the Taihe arch bridge collapse. Engineering Structures, 176[June], 881–891. https://doi.org/10.1016/j.engstruct.2018.09.011

Wardhana, K., and Hadipriono, F. C. (2003). Analysis of Recent Bridge Failures in the United States. Journal of Performance of Constructed Facilities, 17[3], 144–150. https://doi.org/10.1061/(asce)0887-3828(2003)17:3(144)

Marín Guzmán, C. R., and Maldonado Noboa, J. S. (2022). Estudio de las causas del colapso de puentes en Ecuador (2000-2022). MQRInvestigar, 6[4], 368–395. https://doi.org/10.56048/mqr20225.6.4.2022.368-395

Huang, Y., Wang, J., and Jin, D. (2011). Performance of a rigid frame arch bridge under near-fault earthquake ground motion. Advanced Materials Research, 250–253[May 2008], 1869–1872. https://doi.org/10.4028/www.scientific.net/AMR.250-253.1869

Sung, Y. C., and Wang, C. Y. (2013). A study on damage assessment of the scoured bridges. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, 36[8], 994–1007. https://doi.org/10.1080/02533839.2012.747066

Niu, Y., and Yang, Q. (2020). Analysis of arch bridge collapse based on finite element technology. IOP Conference Series: Materials Science and Engineering, 740[1]. https://doi.org/10.1088/1757-899X/740/1/012173

Xing, S., Ye, J., and Sun, H. (2011). Study on finite element model of bridge multi-pile foundation. Key Engineering Materials, 456, 103–114. https://doi.org/10.4028/www.scientific.net/KEM.456.103

Zakariya, A., Rifa’i, A., Ismanti, S., and Hidayat, M. S. (2023). Axial and lateral bearing capacity assessment of bored piles on medium-dense sand and liquefiable potential based on numerical simulation. IOP Conference Series: Earth and Environmental Science, 1184[1], 012007. https://doi.org/10.1088/1755-1315/1184/1/012007

Cardoso, A. H., and Bettess, R. (1999). Effects of time and channel geometry on scour at bridge abutments. Effects of Time and Channel Geometry on Scour at Bridge Abutments, April, 388–399.

Melville, B. W., and Raudkivi, A. J. (1996). Effects of Foundation Geometry on Bridge Pier Scour. Journal of Hydraulic Engineering, 122[4], 203–209. https://doi.org/10.1061/(asce)0733-9429(1996)122:4(203)

Oliveira, D. V., Lourenço, P. B., and Lemos, C. (2010). Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula. Engineering Structures, 32[12], 3955–3965. https://doi.org/10.1016/j.engstruct.2010.09.006

Simoes, L., and Negrao, J. (1994). Sizing and geometry optimization of cable - stayed Bridges. 52[2].

Pandey S., Atul Er, B. Y. (2019). Planning , designing and proposing a flyover road using autocad Autocad civil 3d software. August, 3–8.

Sayyed, G., and Pawar, P. (2023). Optimization of critical factors responsible for prestressed concrete bridge pier collapse. IOP Conference Series: Earth and Environmental Science, 1130[1]. https://doi.org/10.1088/1755-1315/1130/1/012031

Cajamarca-Zuniga, D., Kabantsev, O. V., and Marin, C. (2022). Macroseismic intensity-based catalogue of earthquakes in Ecuador. Structural Mechanics of Engineering Constructions and Buildings, 18[2], 161–171. https://doi.org/https://doi.org/10.22363/1815-5235-2022-18-2-161-171

Cajamarca-Zuniga, D., and Kabantsev, O. (2023). Influence of the Carnegie Ridge on the Development of Seismogenic Sources and Seismicity of Ecuador. Lecture Notes in Civil Engineering, 282, 299–310. https://doi.org/https://doi.org/10.1007/978-3-031-10853-2_28

AASHTO LRFD Bridge Design Specifications, 1881 (2017).


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2024 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.