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I. INTRODUCTION
ne of the most urgent and necessary issues currently facing 
society is climate due to global warming and extreme 
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events (Kovats et al., 2005; Song et al., 2020; An et al., 2020; 
Founda & Santamouris, 2017). The fifth report of the 
Intergovernmental Panel on Climate Change (IPCC) has shown 
that in recent decades there has been a significant increase in O 
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ambient temperatures that will lead to significant negative 
effects on the health and quality of life of inhabitants, mainly in 
urban areas (IPCC, 2013). The transformation of land cover 
caused by the growth of urban areas generated by the significant 
increase in population is one of the procedures that most favors 
climate change and the increase in global temperatures (Song et 
al., 2020; Li et al., 2011). Transformations of the cover 
decrease evapotranspiration (Stewart & Oke, 2012) due to the 
increase in surfaces and spaces built with impermeable 
materials. During the day, they store the heat received from 
solar radiation and in the evening they release it into the 
atmosphere (An et al., 2020; Arnfield, 2003; Zhou et al., 2015), 
increasing the ambient temperature. It is estimated that this 
situation will continue to increase, as the latest forecasts from 
the United Nations (UN) foresee an increase in the urban 
population by 20% by 2050 (UNO, 2018), which will imply a 
significant transformation of global urban coverage (Schneider 
et al., 2010). Some studies have reported positive correlations 
between urban areas and ambient temperatures and negative 
correlations between the latter and green areas. Thus, urban 
areas have higher temperatures than rural areas, but green 
spaces in urban areas also have lower temperatures than 
urbanized areas (Hidalgo García & Arco Díaz, 2021; Hua et al., 
2020; Karakuş, 2019; Guo et al., 2020). At the same time, the 
increase in temperatures in urban areas is increased by the 
Urban Heat Island (ICU) phenomenon. This is a phenomenon 
of modification of the urban climate and its persistence is 
affected by different human tasks (Santamouris, 2020). 

Today, it is estimated that 30% of the world's population 
suffers from extreme heat weather conditions and the forecast 
is that in the next 20 years this will reach 74% (Mora et al., 
2017). Faced with this climate emergency, it is considered 
necessary to carry out studies to identify which areas of cities 
are more likely to suffer from severe heat stress, when these 
levels of heat could be reached and what factors influence their 
growth. All this, with the aim of adopting measures that protect 
citizens and improve their quality of life through the 
determination of guidelines and the taking of measures by urban 
planners and public administrations. To measure the heat 
exposure that urban dwellers may have and within the scientific 
community, the heat stress index (Hi) is commonly used 
(Kotharkar et al., 2021; Jacobs et al., 2019; Verdonck et al., 
2018) since it obtains adequate results with environmental 
conditions and only requires two parameters: ambient 
temperature and relative humidity. To understand and obtain 
these environmental variables, it is possible to use urban 
climate models such as the Muklimo of the German 
meteorological agency (Geletič et al., 2018) or the UrbClim of 
the Copernicus climate change service (Verdonck et al., 2018; 
Martí Ezpeleta & Royé, 2021; De Ridder et al., 2015) attached 
to the European Space Agency (ESA). This consists of a simple 
urban surface energy balance model designed to target the 
spatial scale of a city, but fast and comprehensive enough to 
obtain results with high levels of accuracy (De Ridder et al., 
2015). Its use in heat stress studies in urban areas is widespread 
(Verdonck et al., 2018; Royé et al., 2021) as it allows climatic 

variables to be obtained at a resolution of 100 meters. 
Existing studies of heat stress in urban areas and its evolution 

over the last few decades have reported that it has increased 
significantly, has a high spatio-temporal variability and is 
conditioned by the climatic and morphological conditions of 
cities. Thus, the heat stress index is higher during the summer 
months and is more intense in urban areas with high densities 
and few green areas (Kotharkar et al., 2021; Jacobs et al., 2019; 
Geletič et al., 2018; Kumar et al., 2022; Hass et al., 2016). 
Thus, the study of heat stress in the city of Madrid using the 
UrbClim model between 2008 and 2017 reported an important 
positive correlation between the different coverages and heat 
stress (Royé et al., 2021). Studies on four cities (Kolkata, 
Chennai, Delhi, Mumbai) in India (Kumar et al., 2022) and on 
the city of Nagpur (India) (Kotharkar et al., 2021) reported that 
the increase in heat stress is greater in areas with higher density 
and population as opposed to neighborhoods with lower density 
and population where the increase in stress is lower. On the 
other hand, and taking into account the ZCLs, the heat stress 
studies on the cities of Nagpur (India) (Kotharkar et al., 2021), 
Brno (Czech Republic) (Geletič et al., 2018) and Antwerp, 
Brussels and Ghent (Belgium) (Verdonck et al., 2018) reported 
that the ZCLs identified as 2, 3, 5, 8, 9 and 10 presented a higher 
heat stress while the ZCL 6, B, D and G had lower heat stress 
due to the greater availability of green areas and fewer 
impervious areas. 

The aim of this research is to analyze the evolution of the 
heat stress index (Hi) during the years 2008, 2012 and 2017 in 
the different ZCL of the city of Madrid using the UrbClim 
climate model. With the help of Landsat 5 and 8 images, the 
Normalized Built-Up Difference Index (NDBI) and the 
Normalized Difference Vegetation Index (NDVI) have been 
generated, and the World Urban Database and Access Portal 
Tools (WUDAPT) atlas have obtained the different ZCLs. 
Then, with the help of statistical analysis and using the Data 
Panel and ANOVA techniques, the correlations between the 
data obtained and the relationship between the variables have 
been determined. 

The questions that we propose to answer with this research 
are the following: 1. What evolution has the heat stress index 
experienced between 2008, 2012 and 2017 in the city of 
Madrid? 2. Is there a relationship between the heat stress index 
and the NDVI and NDBI indices in the different ZCLs? 3. Can 
the results obtained be important in future urban planning of 
urban areas? 
The advance provided by this study is to facilitate a study on 
the evolution of the heat stress index on the different LCZs 
during the years 2008, 2012 and 2017 and what factors 
influence its variability. All this with the aim of improving 
future decisions by urban planners and public administrations 
on the development of new urban areas. The predilection for the 
development of heat stress-resilient ZCLs will enable urban 
areas to become climate-resilient environments and improve 
people's quality of life. All this, through a methodology under 
an open-source work environment to be able to extrapolate the 
results obtained to other areas. 
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II. METHODS 

A. Study area 
The city of Madrid is shown in Fig. 1. The UTM 

geographical coordinates are latitude 37º 20' 44.54'' and 
longitude 5º 58' 16.62''. The altitude above sea level is 657 m. 
Its population is 3.22 million. The climate according to the 
Köppen-Geiger climate classification is of the Mediterranean 
climate type (Csa). This implies hot, dry summers and wet, cold 
winters (de Castro et al., 2007). 

B. Methodology 
First, the NDVI and NDBI indices of the city of Madrid have 

been obtained using Landsat 5 images (2008) with a resolution 
of 30 meters and using Landsat 8 (years 2012 and 2017) with a 
resolution of 15 meters. The high-precision drawings of the 
different ZCLs from the WUDAPT atlas have been downloaded 
below. This database is supported by observation and numerical 
modeling values for the different thermal characteristics of 
cities [20,27]. Its use in soil identification studies using ZCL is 
widely documented [20,28,29]. The average values of relative 
humidity and ambient temperature for the month of August for 
the years 2008, 2012 and 2017 have been obtained from the 
UrbClim model of the European Space Agency (ESA). With 
these data, the heat stress index has been obtained in the 
different ZCLs and subsequently correlated with the rest of the 
indices with the help of statistical analysis using the specialized 

software for data science, STATA, version 16. ANOVA 
analysis and data panel were used to determine and analyze 
significant correlations of the variables.  

C. Landsat Images 
Landsat 5 and 8 images were obtained from the United States 

Geological Survey (USGS) for the years 2008, 2012, and 2017, 
respectively. The Landsat 5 satellite has a total of seven 
multispectral bands with a resolution ranging from 120 to 30 
meters. In contrast, Landsat 8 has ten bands with a resolution 
ranging from 100 to 15 meters. The images selected for this 
research correspond to the month of August of the years 2008, 
2012 and 2017. It was considered that the cloudiness of the 
selected days was not greater than 5% to increase the uptake of 
urban areas. After downloading, the images underwent an 
atmospheric correction process in OLI bands. To this end, the 
Dark Object Subtraction (DOS) algorithm was used (Chavez, 
1988; Zhang et al., 2015) and the Semi-Automatic 
Classification (SPC) plugin implemented in the QGIS software 
was used (Congedo, 2016; Rozenstein et al., 2014). 

NDVI makes it possible to determine the greenness and 
density of vegetation using the near-infrared (NIR) and red 
(Red) spectral bands. The result gives us a range of values 
ranging from -1 to 1. It is calculated using equation 1: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅

 (1) 

Using the NDBI we can determine the proportion of built-up 
areas compared to non-built areas. The result gives us a range 
of values ranging from -1 to 1. It was calculated using the 
shortwave infrared (SWIR) and near-infrared (NIR) bands 
according to equation 2 (Zha et al., 2003): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (2) 

D. ZCL Mapping & Classification 
The ZCL maps of the city of Madrid (Fig. 3) are found in the 

WUDAPT atlas database (Verdonck et al., 2018; Demuzere et 
al., 2022) (https://ZCL-generator.rub.de/submissions) based on 
the classification proposed by the authors Steward and Oke 
(2009). The identification of the different ZCLs makes it 
possible to catalogue areas that have a specific thermal regime 
over time based on their location and morphological 
characteristics (Stewart & Oke, 2012). Its use in landscape 

 
Fig. 1: City of Madrid, Spain. (Source: Authors' own elaboration on Google 

maps) 

 
Fig. 2. Flow chart designed. Source: Author’s creation. 

 
Fig. 3: ZCL established for the city of Madrid according to Atlas WUDAPT. 

(Source: https://ZCL-generator.rub.de/submissions) 
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characterization studies is widely documented (Anjos et al., 
2020; Emmanuel & Krüger, 2012; Wang & Ouyang, 2017; 
Brousse et al., 2019; Khamchiangta & Dhakal, 2019; Equere et 
al., 2020). Fig. 4 shows the area (%) occupied by each ZCL. 
Thus, the ZCLs with the greatest extension are 2, 5, 8 and 4, 
while those with the smallest extension are G, 3, E and D. 

The accuracy values reported by the WUDAPT atlas for the 
cities investigated range from 0.67 to 0.69. However, a 
qualitative and quantitative comparison of the different LCZs 
was made with Landsat and Google Street View satellite 
imagery. In general, the ZCLs of the atlas are consistent with 
satellite imagery and Google Street View, presenting values 
that fall within the patterns defined by the authors Steward and 
Oke, (2012). 

E. UrbClum Model 
Average ambient temperature and relative humidity data for 

the months of August for the years 2008, 2012 and 2017 were 
obtained from the UrbClim model developed by ESA's 
Copernicus programme. This model, commonly used in similar 
research, is based on a transfer scheme between the two affected 
layers: atmosphere and geosphere (De Ridder et al., 2015). This 
scheme, initially called the Land Surface Interaction 
Calculation (LAICA), only included rural areas, but was later 
modified to include urban areas (De Ridder et al., 2015). Its use 
in climate studies on urban spaces has been validated by studies 
carried out in several European cities, such as Antwerp, Bruges, 
Ghent (Verdonck et al., 2018) and Madrid (Martí Ezpeleta & 
Royé, 2021). 

F. Hi (heat index) 
Equation 3 has been used to determine the Hi in the cities 

investigated. This was developed in 1990 (Rothfusz, 1990) and 
later modified (Brooke Anderson et al., 2013) according to 
formula 5: 

Where: Hi is the heat stress index in °C, T is the air 
temperature in °C, and H is the relative humidity in %. Based 
on the results obtained, the effects of heat on the population can 
be determined based on Table 1 (Kotharkar et al., 2021). 

III. RESULTS 

A. Evaluation of NDVI and NDBI indices  
The spatio-temporal evolution of the NDVI and NDBI 

indices of the city of Madrid during the years 2008, 2012 and 
2017 can be consulted in Figs. 5 and 6. 

The average results of the NDVI and NDBI indices for each 
year investigated can be shown in Fig. 7. The results obtained 
correspond to the standard values for a city with this 
geographical location, characteristics and population. The 
NDVI values indicate that the vegetation can be considered as 
dispersed and suitable for the summer period, considering that 
the selected satellite images correspond to the summer season. 
The NDVI in 2012 is higher than in 2008 while in 2017 it 
decreases compared to 2012. This circumstance could be 
motivated by the geographical location of the city and its 
relationship with the rainfall that influences the state of the 
vegetation.  

The NDBI values suggest that in Madrid compact areas with 
a medium-high density predominate, as opposed to open areas 
with low-medium density and green areas. There has been a 
significant increase in built-up areas between 2008 and 2017. It 
is interesting to note how in Madrid the increase coincides with 
the significant decrease in the value of the NDVI index. This 
circumstance could be motivated by the development of large 
compact built-up areas that have smaller areas for green areas 
than open areas. Numerous studies report negative relationships 
between NDVI and NDBI indices in urban areas that have 
experienced significant growth (Kafy et al., 2021; Wang et al., 
2019; Yang et al., 2020). 

Fig. 8 shows the mean values of NDVI and NDBI in each 
ZCL. In general terms, the NDVI index presents the highest 
values in the ZCLs classified as rural (A, B, C, D, E, F and G). 
On the contrary, the lowest values are reported in the ZCLs 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐻𝐻𝐻𝐻) =  −8.78469475556 + (1.61139411 × 𝑇𝑇)  
+ (2.33854883889 × 𝐻𝐻)  
− (0.14611605 × 𝑇𝑇 × 𝐻𝐻)  
− (0.012308094 × 𝑇𝑇2)  
− (0.0164248277778 ×  𝐻𝐻2)   
+ (0.002211732 ×  𝑇𝑇2 × 𝐻𝐻)  
+ (0.00072546 × 𝑇𝑇 × 𝐻𝐻2)
− (0.000003582 × 𝑇𝑇2 × 𝐻𝐻2) 

 

 

(3) 

TABLE I 
CLASSIFICATION OF THE HEAT STRESS INDEX (HI) AND EFFECTS ON THE 

POPULATION. 
Heat 
Index Heat Rating Hi Overall effect on people 

Hi-1 Risk-free < 26.00 There is no risk to the 
population group. 

Hi-2 Very warm 26.66 – 32.21 Fatigue possible with 
prolonged exposure and 

physical activity. 
Hi-3 Hot 32.22 - 39.43 Heat stroke, heat cramps or 

heat exhaustion LIKELY and 
heat stroke POSSIBLE with 
prolonged exposure and/or 

physical activity. 
Hi-4 Very hot 39.44 - 51.10 Heat stroke, heat cramps, or 

heat exhaustion POSSIBLE 
with prolonged exposure 
and/or physical activity. 

Hi-5 Extremely 
hot 

>51.11 Heat/heat stroke VERY 
LIKELY with continuous 

exposure. 
 

 

 
Fig. 4: % of surface area of each ZCL in the city of Madrid. (Source: Authors' 

own elaboration with WUDAPT atlas data) 
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classified as urban (2, 3, 4, 5, 6, 8 and 9). Within urban areas, 
open ZCLs (4, 5 and 6) present higher NDVI values as opposed 
to the lower values obtained in compact ZCLs (2 and 3). These 
data suggest that vegetation is lusher and has a larger surface 
area in rural areas and open urban areas as opposed to compact 
urban areas. 

On the other hand, the NDBI index has the highest values in 
urban ZCLs (2, 3, 4, 5, 6, 8 and 9) as opposed to the lowest 
values obtained in rural ZCLs (A, B, C, D, E, F and G). Within 
urban areas, compact ZCLs (2 and 3) present higher values as 
opposed to the lower values obtained in open ZCLs (4, 5 and 
6). These data suggest that buildings are more occupied and 
denser in urban areas as opposed to rural areas and within the 
former in compact areas as opposed to open areas.  

The results of the ANOVA test carried out on the NDVI and 
NDBI indices showed through the Shapiro Wilk test that they 
present non-normal distributions within the different ZCL since 
P value < 0.05. Therefore, to continue with the ANOVA 
analysis for non-normal distributions, it is necessary to perform 
the Kruskal Wallis test, the results of which are shown in Table 

2. According to these reported results, the NDVI and NDBI 
indices present statistically significant relationships above 99% 
in the different ZCLs of the cities investigated. 

B. Heat stress index 
Fig. 9 shows the spatio-temporal evolution of Hi 

temperatures in the city of Madrid between 2008, 2012 and 
2017. Hi values are higher in urban areas (those with higher 
NDBI index values and lower NDVI index values) as opposed 
to rural areas (those with higher NDVI index values and lower 
NDBI index values) where Hi values are lower.  

Fig. 10 shows the average evolution of the Hi index by year 

for the city of Madrid. In general terms, there is an increasing 

  
Fig. 7: Evolution of NDVI and NDBI indices Madrid years 2008, 2012 and 

2017. (Source: Authors) 
Fig. 8: Average NDVI and NDBI index values for each ZCL in Madrid. (Source: 

Authors' own elaboration with Landsat 5 and 8 images) 
 

 
Fig. 5: Evolution of NDVI Madrid 2008, 2012 and 2017. (Source: Authors' own elaboration with Landsat 5 and 8) 

 
Fig. 6: Evolution of NDBI Madrid 2008, 2012 and 2017. (Source: Authors' own elaboration with Landsat 5 and 8) 

TABLE II 
ANOVA TEST RESULTS OF THE NDVI AND NDBI INDICES IN THE DIFFERENT 

ZCLS 

Data NDVI NDBI 

P value 0,0001*** 0,0001*** 
F 1253,453 869,260 

F: Statitian 
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trend in the Hi index obtained in the different years 
investigated. Thus, in 2008 the average value of Hi in Madrid 
was 26.33ºC while in 2017 it was 28.2ºC. These values report 
an average growth of 7.10% between the two years. The high 
increase in the Hi could be justified by its high urban growth, 
corroborated by the increase in the NDBI index and the 
decrease in the NDVI index.  

Fig. 11 shows how the classification of the Hi index has 
evolved between 2008 and 2017 according to the effects on the 
population (Table 1). In this way, it can be seen how the area 
classified as no risk has been reduced and even disappeared in 
2012 and the area classified as warm has increased, especially 
in 2017. 

Fig. 12 shows the evolution of the Hi index for each ZCL. It 
can be observed that the greatest increases in Hi occur in urban 
ZCLs (2, 3, 4, 5, 6, 8 and 9) while on the contrary, the increases 
are smaller in rural ZCLs (A, B, C, D, E, F and G). Thus, the 
city has experienced an average growth of Hi in urban ZCLs of 
3.46% while the growth in rural ZCLs has been 2.91%. It can 
also be seen that within urban areas, compact ZCLs (2 and 3) 
show greater increases in Hi (3.71%) than open ZCLs (4, 5 and 
6) (3.41%). 

The results of the ANOVA test carried out on the Hi index 
showed through the Shapiro Wilk test that they do not present 
normal distributions within the different ZCL since P value < 
0.05. Therefore, in order to continue with the ANOVA test for 
non-normal distributions, it is necessary to perform the Kruskal 
Wallis test, the results of which are shown in Table 3. 

According to the results reported, the Hi values present 
statistically significant relationships above 99% between the 
different ZCLs. Then, in order to determine the relationships 
between Hi and the NDVI, NDBI and ZCL indices of the cities 
under study, the statistical analysis is carried out using the Data 
Panel method. To do this, Pearson's correlation coefficient was 
first determined and then the analysis called Data Panel was 
carried out. For the latter, the Generalized Least Squares 
method was used. The results of the data analysis are shown in 
Tables 4 and 5. 

Table 4 shows that Hi shows a positive correlation with the 
NDBI index (0.051) and a negative correlation with the NDVI 
index (-0.316) and ZCL (-0.307). 

The results of the statistical analysis using the Data Panel 
technique (Table 5) show a statistically significant and positive 
relationship above 99% between the Hi variable and the NDBI 
variables and a negative relationship above 99% with the NDVI 

 
Fig. 9: Evolution of the Hi Madrid Index in 2008, 2012 and 2017. (Source: Authors' own elaboration with UrbCLim data) 

 
 

 
Fig. 10: Average evolution of the Hi index for the years 2008, 2012 and 2017. 

(Source: Authors' own elaboration with UrbClim data)

 
. 11: Evolution of the effects on the Hi index population 2008, 2012 and 2017. 

(Source: Authors' own elaboration with UrbClim data) 

 
Fig. 12: Evolution of Hi by ZCL. (Source: Authors' own elaboration with data 

from the UrbClim) 
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and ZCL variables. It is observed that there is a good agreement 
between the dependent variable and the independent variables 
by observing the values of R2, F and Prob>Chi2. The level of 
fit is greater than 99% significance since Prob>Chi2= 0.000. 

IV. DISCUSSION 
This study analysed the evolution of the Hi heat stress index 

during the years 2008, 2012 and 2017 in the city of Madrid and 
its relationship with the NDVI, NDBI and ZCL indices. All of 
this is motivated by the need to know the evolution of the Hi 
and thus obtain a global vision of it that allows the decree of 
mitigation measures because of climate change and temperature 
increases. 

It has been evidenced that the NDVI index related to 
vegetation has shown a decrease in the city of Madrid. On the 
other hand, the results report that the highest values of this index 
are present in rural ZCLs (A, B, C, D, E, F and G) as opposed 
to urban ZCLs (2, 4, 5, 6, 8 and 9). However, within urban 
ZCLs, NDVI values are higher in those classified as open (4, 5 
and 6) as opposed to compact ones (2 and 3) where the values 
are lower. On the contrary, it has been shown that the NDBI 
index, related to building, has experienced large increases 
between 2008 and 2017 due to the significant urban 
development that Spanish cities have experienced. On the other 
hand, the results report that the highest values of this index are 
present in urban ZCLs (2, 4, 5, 6, 8 and 9) as opposed to rural 
ZCLs (A, B, C, D, E, F and G). However, within urban ZCLs, 
NDBI values are higher in those classified as compact (2 and 3) 
as opposed to open ones (4, 5 and 6) where the values are lower. 
These values determine the urban morphology of the city and 
ZCL studied, and the results are in line with other studies 

carried out by other authors (Hidalgo García & Arco Díaz, 
2021; Wang et al., 2019; Diallo-Dudek et al., 2015; Kafy et al., 
2021; Avdan & Jovanovska, 2016) in other cities and territories, 
allowing the data obtained in this research to be validated. 
These studies report results that mainly relate low NDVI index 
values with high NDBI index values in compact urban areas. 
Conversely, high NDVI values are related to low NDBI values 
in rural areas.  However, the variability obtained in the NDVI 
indices could not only be attributed to urban planning systems 
but also, to a small extent, to the variability in rainfall in the 
area during the period under study (Nicholson & Farrar, 1994; 
Li et al., 2002). 

There has been a significant increase in the Hi heat stress 
index in the city between 2008 and 2017. However, our results 
suggest that the Hi index has grown more strongly in urban 
areas as opposed to rural areas. In relation to the former, this 
growth has been greater in the compact ZCLs (2 and 3) as 
opposed to the open ZCLs (4, 5 and 6). This circumstance is 
due to the use of impermeable materials with high thermal 
absorption and the scarcity of green areas in compact areas. 
This produces an increase in ambient temperatures, decreases 
the relative humidity of the environment, which produces an 
increase in the Hi index. The arrangement of the green areas 
allows the minimization of temperatures because of the 
shadows they generate and the cooling rates due to the 
evapotranspiration process. Compact urban areas have few 
green areas and large built-up areas, which gives low NDVI 
index values and high NDBI index values. This trend has been 
observed and reported in studies on the cities of Kolkata, 
Chennai, Delhi, Mumbai and Nagpur (India) where they relate 
the areas with the largest built-up area and the lowest vegetation 
cover with the hottest areas and with the highest intensity of the 
Hi index (Kotharkar et al., 2021; Kumar et al., 2022). At the 
same time, our results are in line with the research carried out 
by other authors (Verdonck et al., 2018; Geletič et al., 2018; 
Martí Ezpeleta & Royé, 2021). The regression model reported 
statistically significant and negative relationships between the 
Hi and the NDVI and ZCL indices and positive relationships 
with the NDBI variable, evidencing what was reported 
analytically. 

V. CONCLUSIONS 
This study has analysed the evolution of the Hi heat stress 

index in the city of Madrid during the years 2008, 2012 and 
2017. Environmental data have been obtained from ESA's 
UrbClim climate model. However, to improve the evaluation 
and allow an extrapolation of the results to other cities, the 
results have been reported using the widely known 
classification of land areas of ZCL. 

A significant spatio-temporal variability between the Hi and 
the different LCZs has been corroborated. Thus, urban and 
compact LCZs (2 and 3) show greater increases in Hi than rural 
areas and open urban areas (4, 5 and 6). A positive correlation 
between the Hi and the NDBI and ZCL indices and a negative 
correlation with the NDVI index have been reported. Therefore, 
areas with more impervious areas and fewer green areas are 
more susceptible to greater increases in heat stress.  

TABLE III 
ANOVA TEST RESULTS OF THE NDVI AND NDBI INDICES IN THE DIFFERENT 

ZCLS 
Data Hi 

P value 0,0001*** 
F 871,268 

 
TABLE IV 

PEARSON'S CORRELATION COEFFICIENT BETWEEN HI AND NDVI, NDBI AND 
ZCL INDICES  

Hi NDVI NDBI ZCL 

Hi 1    

NDVI -0,316 1   

NDBI 0,051 -0,693 1  

ZCL -0,307 0,287 -0,119 1 
 Hi NDVI NDBI ZCL 

 
TABLE V 

DATA PANEL BETWEEN HI AND NDVI, NDBI AND ZCL 
Variables β coeficiente ρ value Standard 

deviation 

NDVI -7.608 0.000*** 0.362 
NDBI 4.525 0.000*** 0.326 
ZCL -0.068 0.000*** 0.051 

 R2=0.69 F=286,21 Prob>chi2= 
0.000 
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These circumstances show that public administrations and 
urban planners should have a predilection in future 
developments for open ZCLs with large green spaces as 
opposed to compact ZCLs in order to improve the resilience of 
cities to future increases in temperatures and Hi. On the other 
hand, and to improve the quality of life of the inhabitants of 
existing compact areas, it is necessary to draw up contingency 
plans and control of the future urban climate that reward the use 
of green roofs and facades. These results can be extrapolated to 
other cities or urban areas with the same ZCLs 
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