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I. INTRODUCTION
his work includes the estimation of the elastic seat 
produced by the excavation of a tunnel with a discrete 

numerical formulation of the problem. The solution of the 
search displacement field is performed with a finite element 
moment (FEM). The settlement produced by tunnelling is a 
matter of interest in building engineering and architecture 
(Boscardin et al., 1989; Bai et al., 2014; Zhou et al., 2016). 

C.A.R.G., Á.M.R.P., J.A.H.T., and J.J.C.M. are associate professor at 
Escuela Técnica Superior de Ingeniería - Campus universitario " El Carmen ". 
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Possible causes include vibrations and loss of bearing capacity 
(Tian et al., 2019; Rallu et al., 2023). But they are also based 
on the variation of effective pressures according to Terzaghi's 
postulate: "the resistance to shear stress and the change in 
volume of a soil depend on the magnitude of the effective 
pressure and its variations" (Terzaghi et al., 1996).  

The quantification of the maximum seat sought can be 
performed with analytical formulations. In this work, the bases 
and modeling by means of an MEF in a tunnel problem context 
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in granular soils are exposed. The construction of the tunnel 
produces an infiltration into the interior of the tunnel and the 
corresponding variation in the effective stresses. The defined 
MEF numerically approximates the solution of the differential 
equations resulting from integrating Darcy's law with the 
continuity equation in a continuous porous medium 
(Zienkiewicz et al., 1996; Zienkiewicz et al., 2013; Gonzalez et 
al., 2017; González et al., 2007).  The lower contour in contact 
with the saturated soil layers is an impermeable rock layer, 
constituting a de facto biphasic medium (Arduino, 1996). The 
problem is initially dynamic (Wang et al., 2021). It is 
hypothesized that the flow within the tunnel is completely 
stabilized at a constant flow rate (Su et al., 2017; Nikvar 
Hassani et al., 2016). The chosen tunnel diameter is 10 m. The 
scope of this work is limited to an estimation of the 
displacements in certain nodes of a surface foundation, and to 
the key and floor of the tunnel, following a simplified process 
with situation before and after the construction of the tunnel. 
However, for estimates that require an accurate analysis of the 
entire tunnel outline, outside the scope of this work, a three-
state procedure is required (Rodríguez et al., 2023). For the case 
study, the analysis carried out allows a first estimation of the 
seat including the effect due to Terzaghi's principle 

II. METHODS 

A. Fundamentals of the Finite Element Method in a Porous 
Media  

The MEF used is traditional, with a formulation in 
displacements and isoperimetric Lagrangian quadratic finite 
elements (Olivella et al., 2002; Liu et al., 2022). However, due 
to the medium to which it is applied, which is a porous medium, 
the mathematical apparatus requires certain specific 
adaptations. The main variables of the stationary problem in 
porous medium are the piezometric head, the flow velocity, the 
hydraulic gradient or "motor" of the movement, and the 
interstitial pressure. As for the equations of governance of the 
problem, expressed in a field problem: 

 
a) A mass conservation equation that must consider the 

saturated medium in which it is located. Considering 
that the stationary problem is addressed, once the flow 
is stabilized, you have:  

∇𝑞𝑞 = 𝜌𝜌 · 𝐶𝐶 · 𝜕𝜕∅
𝜕𝜕𝜕𝜕

                         (1) 

Where ∅ the total potential, which in our case is the 
piezometric height; ∇𝑞𝑞 The Conductive Term, 𝜌𝜌 Density and C 
is the slope of the water storage curve. In the stationary 
problem, knowing that the velocity vector of the flow is, the 
problem is reduced to�⃗�𝑣: 

∇�⃗�𝑣 = −𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 0                         (2) 

 
b) Behavioural (or constitutive) law. In this kind of 

problem it is Darcy's law: 

�⃗�𝑣 = −𝐾𝐾∇ℎ = 𝐾𝐾 · 𝚤𝚤                         (3) 

Where K is the coefficient of soil permeability, or hydraulic 
conductivity and the hydraulic gradient or "motor" of the 
motion and is equal to 𝚤𝚤. 

𝚤𝚤 = −∇ℎ. 

By not considering heat transfer phenomena, Fourier's law 
can be dispensed with, so in the problem the integration of both 
equations provides the only equation that governs the problem: 
Laplace's equation:  

∇2ℎ = 0                         (4) 

The weak form of the MEF is used, with the weighted 
residuals method and the corresponding Galerkin 
approximation (the same form functions are used as used for the 
problem unknown) (Wang et al., 2016; Korsawe et al., 2006). 
Formulation in a porous medium, in a general case, requires 
integrating the Navier–Stokes equations. Darcy's law applies to 
the stationary problem (Larese et al., 2015). And in the case 
analysed, assuming a stabilized flow, the problem is quite 
simplified with the Laplace equation. Gauss's divergence 
theorem simplifies the formulation for an MEF applied to a 
field problem (Zienkiewicz et al., 2005; 2013). Applying the 
principle of virtual works (hereinafter PTV), Gauss's 
divergence theorem and the corresponding Galerkin 
approximation, we arrive at the following general expression of 
the MEF in porous medium expressed in residual form: 

∇ω = ∫ ∇ω(𝐾𝐾∇ℎ)𝑑𝑑Ω − ∮ 𝜔𝜔 ∙ 𝑣𝑣𝑛𝑛𝑑𝑑Γ = 0⬚
Γ

⬚
Ω                          (5) 

Where 𝑣𝑣𝑛𝑛  is the normal flow vector to the contour, Γ the 
contour, Ω the domain y ∇ω the weighting function in the PTV. 
The negative sign in the second term is due to the flow 
following a direction from the highest to the lowest piezometric 
points. 
As for the boundary conditions: 

a) Essential boundary conditions or Dirichlet (Hansbo et 
al., 2015): the problem in porous medium is to know 
the piezometric height h in one part  Γℎ  from contour. 
In practice, it involves knowing the water table: ℎ = ℎ� 

b) Natural or Neumann's boundary conditions 
(Sandström et al., 2013): in our case, they consist of 
knowing the derivative of the fluid flow through a part 
of the contour  Γ𝑣𝑣𝑛𝑛 . The problem of flow in porous 
medium usually refers to a contour condition with 
impermeability, as for example in our case soil-
impermeable rock interaction: �⃗�𝑣 · 𝑛𝑛�⃗ = 0� 

B. Implementation of Terzaghi's Principle 
To implement Terzaghi's principle already expressed above, 

a sequential process in the MEF encoded in MATLAB ® is 
required. Terzaghi's principle, in its formulation, uses a material 
constant, the volumetric modulus of deformation KT, which has 
the well-known formulation: 
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𝐾𝐾𝑇𝑇 = 𝐸𝐸
3(1−2𝜈𝜈)

                         (6) 

Where E is  the modulus of elasticity of the soil and the 
Poisson coefficient. The obtaining of seats by Terzaghi's 
principle is obtained by the following expression, knowing that 
the elastic model predicts that volumetric deformation is only 
produced by variations of normal octahedral stress (Paris, 1998; 
Berrocal, 2004). Therefore, tangential stresses produce only 
distortions. The 𝜈𝜈xy components  of the total stresses before and 
after tunnel construction are not affected by interstitial 
pressures (Figure 9). For the general case:  

Δε𝑣𝑣𝑣𝑣𝑣𝑣 = Δε𝑥𝑥 + Δε𝑦𝑦+ Δε𝑧𝑧 = 1−2𝜈𝜈
𝐸𝐸

�∆𝜎𝜎�𝑥𝑥 + ∆𝜎𝜎�𝑦𝑦 + ∆𝜎𝜎�𝑧𝑧�           (7) 

So: 
Δε𝑣𝑣𝑣𝑣𝑣𝑣 = 1

𝐾𝐾𝑇𝑇
∆𝜎𝜎�𝑣𝑣𝑜𝑜𝜕𝜕              (8) 

Where ∆𝜎𝜎�𝑣𝑣𝑜𝑜𝜕𝜕 is the variation of the octahedral effective stress 
tensor and the variation of the volumetric strain tensor. The 
expression has the character of a constitutive law specific to 
Terzaghi's principle. For the case analysed, it is solved matrixial 
in two dimensions as an elastic problem together with the 
problem of flow in porous medium. An initial pore index for 
predominantly granular layers of 0.3 is considered to have a 
linear evolution with respect to effective stresses and there is no 
porosity reduction limitation for the latter. For the purposes of 
the calculation of the incremental seat, non-edometric 
conditions in planar deformation are considered. 

Δε𝑣𝑣𝑣𝑣𝑣𝑣(Δε𝑥𝑥 ≠0, Δε𝑦𝑦 ≠ 0, Δε𝑧𝑧 = 0). 

C. Case study 
The case study refers to the type of section in Fig. 1. As for 

the variants of the problem, of interest for discussion, they are 
the following:  

• Situation prior to the construction of the tunnel. The water 
table assumes a perfectly horizontal equipotential surface 
in accordance with an aquifer without inputs. The medium 
is porous with constant and identical permeabilities at x 
and y. This case is necessary to generate the matrix of 
effective pressures before the construction of the tunnel. 

• Tunnel terrain without waterproof coating. There is no 
coating or support to prevent infiltration or deformation 
and displacement of the nodes in the tunnel contour. There 
could be light or semi-curdled shoring, but, in any case, 
the tunnel is deformable, and leakage is not prevented. We 
work with the hypothesis that infiltrations are evacuated 

from the tunnel immediately. This case is necessary to 

generate the matrix of effective pressures after tunnel 
construction. 

• Terrain with coated tunnel. There is a perfectly rigid 
assumed support that prevents the deformation and 
displacement of the nodes in the tunnel contour.  

• Unlined and completely waterlogged tunnel terrain. 
Leaks completely flood the tunnel.  

• Terrain with a coated and waterlogged tunnel. Leaks 
completely flood the tunnel. In this case, work is carried 
out only in the state prior to any displacement, no matter 
how small of the tunnel contour.  

The hypotheses for lined tunnels will be: perfectly rigid 
support, so there is no possible translation or rotation in the 
nodes of the contour that are supposed to be fixed in space. 
These cases have been selected to illustrate tunnels of old 
constructions, with very rigid masonry or very thick concrete 
coatings, perfectly seated and without any appreciable 
movement. In recently constructed tunnels it is not possible to 
apply the hypotheses of this case. 

III. RESULTS AND DISCUSSION 
After applying a code in MATLAB® with the relevant 

routines for the FEM problem posed and the case study, the 
following results are obtained. The approach is in 
displacements with isoparametric quadratic Lagrangian 
elements of 9 nodes. The meshing was carried out with Gmsh 
using the Frontal-Delaunay algorithm for high-quality meshes 
with rectangular elements. These results include matrices of 

 
Fig. 1: Case study. Scheme. (Source: Authors' own creation) 

TABLE I 
CASE STUDY. VARIABLES TO STUDY. 

Type of Terrain per Layer Depth Density 
(kg/m3) K (m/s) Degree of Saturation E (Mpa) ν External building loads 

(Mpa/m/m.l.) 
Superficial. Filling of various 

materials 0-5 m 1834,9 1·10-3 Humid unsaturated 40·106 0,3 0.10 

Predominantly granular 
intermediate. Mixture of gravel, 

sand, and some silt and clay 
5-30 m 1936,8 1·10-3 Saturated 40·106 0,3 0 
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numerical results relative to the different elements and knots of 
the mesh, as well as graphically interpretable results. The 
former have been used to define tables 2 to 4, which reflect the 
seats sought, while the latter will serve to visualize the effect of 
the tunnel construction on Fig. 2-17. The approach given to the 
exhibition is with the aim of illustrating the effect of Terzaghi's 
principle 

A. Interstitial Pressure Field 
To be able to determine the field of effective stresses, the 

determination of the field of interstitial pressures is required 
beforehand. Overall, the following sequence has been followed:  

1) Determination of piezometric heights throughout the 
saturated domain.  

2) Determination of the interstitial pressures resulting 
from the saturated medium. 

3) Determination of total stresses according to an elastic 
problem (a constituent matrix for planar strain has 
been selected).  

4) By the difference between the total stresses and the 
interstitial pressures, determination of the effective 
stress field sought. 

The presence of flow in a saturated medium due to a tunnel 
will generate a gradient that will alter the usual horizontal 
equipotential surfaces in an isotropic, homogeneous porous 
medium with a horizontal surface as one of its boundary 

conditions. The determination of the piezometric height field 
can then be carried out in the MEF, assembling the elementary 
permeabilities, assumed in our case for an isotropic medium 
(equal permeability in all 3 directions). Interstitial pressures, a 
function of piezometric heights, will also be altered. By 
comparing the heights for cases with and without a tunnel, it is 
possible to see how an alteration occurs with the appearance of 
a hydraulic gradient. 

Fig. 3 shows how it affects the tunnel, being inside at 
atmospheric pressure and, therefore, having the points of its 
contour a piezometric height equal to its geometric height. 

Similarly, when transforming hydraulic loads to interstitial 
pressures in the granular porous medium of the case analysed, 
a clearer alteration is observed due to the tunnel effect. As 
expected, in the case of a completely flooded tunnel, the 
equipotential surfaces – once full and with stationary flow – 
will remain perfectly horizontal, just as if there were no tunnel. 

 

B. Effective Stress Field 
Then, to be able to calculate and present the field of effective 

stresses, it is necessary to calculate the total stresses 
beforehand. These stresses depend on the elastic characteristics 
of the materials and the effective pressures. Fig. 5 shows 𝜎𝜎𝑥𝑥𝑥𝑥 
and Fig. 6 𝜎𝜎𝑦𝑦𝑦𝑦. 

It is already possible to intuit the frequent failure of the 
tunnel floor in loose soils when the total stresses are observed. 

 
Fig.  2: Piezometric height. With tunnel. (Source: Authors' own creation) 

 
Fig.  3: Interstitial pressures. With tunnel. (Source: Authors' own creation) 

 

 
Fig.  4: Interstitial pressures. With a completely flooded tunnel. (Source: 

Authors' own creation) 

 
Fig.  5: Total stresses σ_xx. With tunnel. (Source: Authors' own creation) 
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This ruling, in which the tunnel "rises", is likely to occur in 
granular soils, among others, and is included, for example, in 
Circular Order 4/2007 of the Ministry of Public Works by 
obliging the concreting of the slabs of certain tunnels in certain 
contexts (Dirección General de Ferrocarriles, 2007). For the 
case without a tunnel and making use of surfaces of equal 
tension, the following voltage distribution is obtained 𝜎𝜎𝑦𝑦𝑦𝑦 
where you can see perfectly how the effect of the surface loads 
is felt in depth. The MEF makes it possible to detect the effect 
of surface loads at 30 m on the rock. 

Fig. 8 illustrates how a rigid lining affects a perfectly seated 
tunnel, such as old subway galleries. In this case, you can see 
the effect produced by this tunnel, increasing the rigidity in its 

surroundings, and considerably altering the yy stress field. This 
effect, in practice, may involve increased settlements in areas 
close to (but not above or contiguous to) the tunnel. A typical 
case in urban areas is the construction of buildings on excavated 
soils and subsequently filled in next to relatively superficial old 
Metro works, with rigid masonry cladding on well-established 
soils (such as, for example, colossal works of old Metro 
galleries). Paradoxically, the buildings on the Metro will settle 
less than in the vicinity of the old work, generating dangerous 
differential settlements in the horizontal xx plane  . Regarding 
shear stresses (Fig.  9), 𝜏𝜏𝑥𝑥𝑦𝑦 are now commented. 

 
Fig.  6: Total Stresses σyy. With tunnel. (Source: Authors' own creation)

 

Fig.  7: Total stresses 𝜎𝜎𝑦𝑦𝑦𝑦. No tunnel. (Authors’ own creation)

 

Fig.  8: Total stresses 𝜎𝜎𝑦𝑦𝑦𝑦. With lined and seated tunnel. (Source: Authors' 
own creation) 

 

 
Fig. 9: Total stresses τxy. With tunnel.. (Source: Authors' own creation)

 

Fig. 10: Effective stresses  𝜎𝜎�𝑥𝑥𝑥𝑥. With tunnel. (Source: Authors' own creation)

 

Fig. 11: Effective Stresses  𝜎𝜎�𝑦𝑦𝑦𝑦. With tunnel. (Source: Authors' own creation) 
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Once the total stresses have been obtained, the effective 
stresses are obtained by difference with the interstitial 
pressures. For 𝜎𝜎�𝑥𝑥𝑥𝑥: 

Note comparing with Fig.  5 of total stresses and same case 
of permeable tunnel, as there are no changes in the first layer of 
soil (up to 5 m deep). This is because, since the soil is not 
saturated, since the water table does not invade it, the total and 
effective stresses coincide. The effect of interstitial pressures is 
appreciable in total stresses, both in xx and yy, as can be seen 
by comparing Figs. 5, 6, 8, 10 and 11.  

However, the shear stress (Fig.  9), if we now compare the 
total tensions with the actual tensions, with and without tunnels, 
they do not differ between them. The figures are omitted 
because they are identical. This is because the xy components  

of effective stresses are not affected by interstitial pressures. 
This is reasonable considering that we are working with respect 
to effective stresses with an octahedral tensor, where 
hydrostatic thrusts can only be perpendicular, lacking xy 
components.  

C. Elastic settlement in accordance with Terzaghi's principle 
The approach that will be developed to resolve this section is 

based on the MEF, whose theoretical basis was discussed 
above. This is required in order to be able to obtain from his 
obtained results a correlation, which the genius of Terzaghi 
made known; That is, what has already been discussed, in other 
words: the deformation due to variation in the interstitial 
stresses depends, not so much on its magnitude as on the 

 
Fig.  12: Vertical displacement field (x5). Before the tunnel. (Source: Authors' 

own creation)

 

Fig.  13: Vertical displacement field (x5). With tunnel. (Source: Authors' own 
creation)

 

Fig.  14: Vertical displacement field (x5). With a rigid tunnel and settled 
work. (Source: Authors' own creation) 

 
Fig.  15: Variation of interstitial pressures before and after the tunnel. (Source: 

Authors' own creation)

 
Fig.  16: Variation of effective stresses before and after the tunnel. Gradient. 

(Source: Authors' own creation)

 
Fig. 17: Variation of effective stresses before and after the tunnel. (Source: 

Authors' own creation)σ�yy 
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variation before and after the works that generate infiltration, in 
our case, of the construction of the tunnel. To solve the Terzaghi 
correlation, instead of using the stiffness matrix in the MEF, the 
volumetric strain modulus with the formulation already given 
above is used. By integrating the results matrices before and 
after the construction of the tunnel, in the simplified procedure 
followed, it is possible to estimate the variations that occur in 
the interstitial pressures and effective stresses in the keystone 
and floor. An analysis with a more complex procedure, but 
necessary for comprehensive contour analysis, is included in 
another work (Rodríguez et al., 2023). Graphically, the results 
of the simplified procedure can be seen in Fig. 15. 

The variation in interstitial pressures will participate in the 
greatest degree of variation in effective stresses, although it is 
not a constant relationship. They are as shown in Fig.  16 
expressing the variation as a gradient. By affected areas, the 
variation in effective stresses can be seen in Fig. 17. 

You can see in the figure the areas (cyan coloured) that have 
no appreciable variations in the effective stresses. A significant 
decompression is detected in the keystone and slab of the 
tunnel, which will lead to an increased risk of collapse. On the 
other hand, on the flanks there is a significant increase in 
effective stresses, which is also not favourable for the stability 
of the tunnel. Note that the unsaturated layer is not affected by 
the variation in effective pressures, except slightly in the area 
closest to the tunnel. The model with MEF under non-edometric 
conditions allows us to model this situation, in which the 
unsaturated wet soil is slightly sucked in by the saturated layer 
immediately below.  

With Terzaghi's formulation, the incremental strain field is 
obtained due to the variation of the effective stresses. By 
integrating the field and selecting the nodes of interest, we have 
the seat produced by the variation of the effective stresses 
sought (Table 3). Since the settlement due to Terzaghi requires 
a variation in the effective stresses, if this settlement is 
considered on the surface, which is not affected by the flow 
problem, the settlement due to this cause will be negligible. 
However, on the safety side and for the purpose of estimating 
the settlement due to Terzaghi, without considering ascents of 
the water table to the surface, a vertical and downward 
displacement has been considered referring to the nodes located 
under the foundation at a depth of 6 m. This assumption, on the 
side of safety for the case at hand, should be limited to an 
extended area of influence of the area affected by the flow 
problem. Proceeding in this way for the fixed value of 6 m, the 
results of tables 3 and 4 are obtained. 

Approximately 35% of the seats in the tunnel key due to 
infiltrations. In addition, the model detects a strong 
decompression in that area. The differential settlement of the 

building area is increased by around 23%. Therefore, the effect 
of tunnel infiltrations cannot be underestimated in the problem 
analysed. The total seat produced (Table 4), with the presence 
of infiltrations in the tunnel in a granular medium of the case 
analysed, is the instantaneous seat plus the primary 
consolidation seat. According to the numerical model used, the 
primary consolidation seat is around 12% on the upper surface, 
without direct contact with the water table but affected by the 
loss of effective stresses in the ground below it, through an area 
of influence. The model allows this effect to be assessed. It is 
foreseeable that this settlement will occur in a very short 
primary consolidation time due to the high permeability of the 
soil. As for secondary consolidation by creep, negligible in 
completely granular soils, in accordance with the CTE-SE-
DBSE-C (Technical Building Code, 2019) standard and 
knowing that the soils are predominantly granular, but in 
practice are rarely free of fines, on the safety side it could be 
estimated at a maximum of 20% of the seats indicated in table 
4.   

IV. CONCLUSIONS 
The variation in effective pressures produces a seat that is 

added to the elastic seat itself. In the case study, the construction 
of the tunnel entails an increase in the elastic differential 
settlement of the building area of around 23% considering 
infiltrations in the tunnel. 

The variation in effective pressures induces the failure of the 
tunnel in its screed. The tunnel "rises", generating an additional 
risk to the collapse due to a possible failure in the support of the 
vault.  

It is checked that the effective stresses are not affected by the 
shear stress. This is consistent with the characteristics of the 
flow problem in porous medium. It is found that the volumetric 
deformations derived from the variation of the effective 
pressures are only affected by the octahedral effective stresses. 
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TABLE III 
ELASTIC SETTLEMENT DUE TO VARIATION IN EFFECTIVE STRESSES. 

Key Screed Foundations (x=10 m) Foundations (x=35 m) Incremental Differential Settlement 
(Terzaghi) 

4,00 ↓cm  4,30 cm ↑ ≈ 0 1,00 cm ↓ ≈ 1 cm ↓ 
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