

ANALES de Edificación

Received: 31-03-2015 Accepted: 15-04-2015 Anales de Edificación Vol. 1, Nº1, 1-6 (2015) ISSN: 2444-1309 Doi: 10.20868/ade.2015.3033

Diagramas de interacción axil-flector en secciones doble "T". Empleo de programa Matlab en aplicaciones estructurales a nivel de sección (parte I). Axial-bending interaction diagrams for "I" sections. Structural applications related to section study using Matlab (part I).

Rodríguez Morales, Sergio

INITEC Industrial Técnicas Reunidas CO. (Spain, r.morales.s@trsa.es)

Resumen—El método multicapa es una potente herramienta de cálculo en el campo de la ingeniería para tratar problemas a nivel de sección. Este método permite tratar problemas relacionados con el comportamiento no-lineal de los materiales, el empleo de materiales con diferentes propiedades en una misma sección, o problemas relacionados con gradiente de temperatura, entre otros. Dos aplicaciones serán tratadas en dos artículos independientes. En este documento el método multicapa se empleará para generar un diagrama de interacción axil-momento para secciones tipo doble "T". La sección de acero se estudiará respecto al régimen elástico y plástico, y se propondrá un parámetro que aportará información sobre la reserva plástica de la sección, cuando actúan simultáneamente un axil y un momento flector, la denominada área plástica. Se ha empleado como entorno de programación el software Matlab para desarrollar el contenido de este artículo.

Palabras clave- Método multicapa; iteración; diagrama; plasticidad; acero; matlab.

Abstract- Multi-layer method is a powerful tool to solve structural engineering problems from a section point of view. This method can solve problems related to non-linear material behavior, different materials at the same section, or aspects related to temperature gradient, among others. Two applications shall be explained in two separate technical papers. In this paper multi-layer method shall be used to generate an axial-bending interaction diagram for "T" steel sections. The section shall be studied from elastic and plastic material properties and a parameter shall be proposed (plastic area) in order to obtain the plastic capacity of a section produced by axial forces and bending moment acting simultaneously. Matlab software had been employed to develop the content of this technical paper.

Index Terms- Multi-layer method; iteration; diagram; plasticity; steel; matlab.

I. INTRODUCTION

Frequently it is more usual to find in technical papers, books or any documentation prepared in colleges or

Sergio Rodríguez Morales, At present finishing Master of Science in Dynamics and Seismic Engineering at ETSIIM-UPM Master in Building Structures UPM-EE, Arquitecto Técnico UPM, and Associate Professor at ETSEM-UPM during 2010 to 2012 years. Civil Engineering Leader at INITEC Industrial Técnicas Reunidas CO. (e-mail: s.rodriguez@upm.es, r.morales.s@trsa.es).

research centres, the results, calculations, numerical developments or graphics generated by software tool Matlab. Matlab is a powerful programing environment which includes thousands of predefined mathematical commands. It represents a great advantage in order to solve a wide range of engineering problems, without a deep programing knowledge from the user point of view.

In the field of structural engineering, there are a several methods to study the structural behavior of a section. One of these methods is the "Mutli-Layer Method" which shall be

Anales de Edificación, Vol. 1, Nº1, 1-6 (2015). ISSN: XXXX-XXXX

adopted in this technical paper. Matlab shall demonstrate the structural behavior of a section through this method, by employing two types of materials: steel and reinforced concrete. The analysis of each materials shall be discussed into two separate articles (Part I Steel and Part II Reinforced Concrete).

Fig. 1. Descriptive Sketch for "Multi-Layer Method". Stress-strain model, dimensions of a general layer, axis reference together with forces are all represented. Among the possibilities of the method, non-linear material behavior treatment is one of the most significant.

In part I of this article, which is discussed in succeeding pages, an interaction axial-bending diagram for "I" steel section types shall be developed first. This matter shall be dealt under an elastic and plastic limit states. On the latter part of this article it shall be proposed the parameter called "plastic area" which tries to provide information about the plastic capacity of a single section subjected simultaneously to axial force and bending moment.

In the part II, which is discussed in a separate article, curvature value associated with first yielding of steel reinforcement shall be obtained. This parameter is extremely important in seismic engineering design, since together with curvature associated with ultimate moment capacity, section ductility parameter can be defined. For this purpose, stressstrain models of concrete material (Mander model) and rebar material (King model) shall be used, which shall allow to study and analyze the problem from a non-linear material behavior.

In both articles two applications shall be explained technically in detail, and by means of a worked examples and the results provided by Matlab, some conclusions can be drawn. Programing codes developed in Matlab shall be shown in the appendix of the articles for benefit of the readers.

II. MULTI-LAYER METHOD

Basically the Multi-layer method is done by dividing the

section in a certain number of layers or "slices". Each layer can exhibit the deformation state versus an external force applied, and therefore the stress levels, whatever stress-strain material model is assumed. Among the advantages of the method are the following: non-linear material application, different material properties acting at the same section, aspects related to temperature gradient applied to a section or cracking in concrete sections, among others.

In case that the forces and bending moments are generated due to normal stresses in longitudinal direction of the element (see figure 1 X direction), the value of force and bending moment shall be calculated by adding the whole contributions of each layer, since this process represents the concept of stress integration all along the section depth. Needless to say, as more number of layer defined the higher accuracy of the results can be produced.

Axil force Continuous way

Discrete way

Discrete way

 $N_X(x) = \int_0^A \sigma x(x, y, z) dA$ $N_x(x) = \sum_{i=1}^i \sigma x_i * t_i * b_i (1)$

Bending Moment Continuous way

 $M_{y}(x) = \int_{0}^{A} z * \sigma_{x} (x, y, z) dA$ $M_{y}(x) = \sum_{i=1}^{i} z * \sigma x_{i} * t_{i} * b_{i}$

III. AXIAL-BENDING INTERATION DIAGRAM FOR "I" STEEL SECTIONS

Most international steel codes allow to design different elements adopting a plastic limit state, as long as some geometrical and material conditions have been met. According to Ec-3 part 1-1, section 5.5, a section can be defined as compact and therefore section plastic design as suitable, if the following conditions have been fulfilled:

Web $c/t \le 396\varepsilon/(13\alpha - 1)$ for $\alpha > 0.5$ Flanges $c/t \le 9\varepsilon$

Where ε is defined as:

$$\varepsilon = \sqrt{\frac{235}{f_y}}$$

Dimensions "t" represents the specified thickness of the section part, and "c" is the height of the web or the length of half flange. For further information refer to table 5.2 of the aforementioned code.

A value equal to 0.82 is adopted conservatively for alpha parameter, since the web is subjected to compressive force and bending moment simultaneously.

The advantages of plastic limit design as compared to elastic limit design is mainly bounded by the economic point

Anales de Edificación, Vol. 1, Nº1, 1-6 (2015). ISSN: XXXX-XXXX

of view of the material and a relationship in between section design and plastic analysis can be established directly. When a section is subjected exclusively to bending moment the variable which provides information about plastic capacity is the one called Shape Factor (f), and that is equal to the ratio between plastic and elastic modulus. Shape factor is not related to the grade of the material.

Fig. 2. Normal stress diagrams due to bending moment applied in strong axis. Compact sections are those sections which can form a plastic hinge, without the reduction of capacity due to local buckling. These sections are defined in Ec-3 as Class 1 and 2.

In case that a section is subjected to axial forces and bending moments acting at the same time, an interaction diagram can be generated that represents its structural behavior assuming the plastic limit state. The gradual yielding of the section is made available by the "Multi-Layer Method", which under this circumstances few layers shall be dealing with axial stresses and the rest shall be dealing with flexural stresses. In figure 3, the procedure is explained graphically.

Fig. 3. Multi-Layer Method application. External fibers deals with the flexural capacity meanwhile internal core fibers are dealing with the axial capacity.

It is not necessary to mention the utility of an interaction diagram from a design point of view, but this representation cannot be limited to that extent alone. It is also possible to establish a parameter to measure the extra plastic capacity for a section if it is compared against elastic limit state. The plastic area parameter can be obtained by following the steps listed below:

1) Section shall be compact according to the geometrical and material specifications in accordance with the reference code employed, otherwise plastic design criteria cannot be adopted.

3) By means of Multi-Layer Method, a pair of values corresponding with axial force and bending moment shall be generated, by gradually yielding ofeach fiber, as described in figure 3. The more pair of values obtained, the more accuracy can be attained in generating the plastic interaction diagram.

4) Once both interaction diagrams are created, these shall be represented in non-dimensional way, by dividing every single value by the ultimate values of plastic and axial bending respectively.

5) Non-dimensional interaction diagrams shall be overlapped. The difference between those enclosed areas resulted into the parameter called in this technical paper "Plastic Area" (see figure 4). Dealing with nondimensional data make it easier to derive results and therefore to make comparison with other section to establish which has the best plastic capacity.

$$A_{plástica} = A_{N-Mp} - A_{N-Me}$$
$$A_{N-Mp=\int_0^1 f\left(\frac{N}{Np}\right) d\left(\frac{N}{Np}\right)}$$
$$A_{N-Me=\frac{1}{2}*\frac{M}{Mp}*1}$$

Fig. 4. Determination of "Plastic Area" as result of subtraction between plastic interaction diagram and elastic interaction diagram.

IV. WORKED EXAMPLE

It is required to obtain the "Plastic Area" parameter for a built-up steel section with dimensions specified in figure 5, with a yield limit of 355 Mpa, and assuming an elasticperfectly plastic model. In order to avoid the strength reduction due to instability problems, member is assumed to be subjected to tensile axial force exclusively and is laterally restrained.

Diagramas de interacción axil-flector en secciones doble "T"... (parte I). Axial-bending interaction diagrams for "I" sections... (part I).

Fig. 5. Built-up section dimensions and stress-strain model adopted.

1) Compact Section checking.

The requirements of compact sections shall be fulfilled as specified by Ec-3 as:

Web
$$c/t \le \frac{396\varepsilon}{13\alpha - 1}$$
 21.67 ≤ 33.35 *Ok*

Flanges

 $\varepsilon = 0.81$

2) Axial and bending values under elastic limit state.

 $c/t \leq 9\varepsilon$

$$N_{pl} = A * f_{yk} = 3947 KN$$
$$M_{el} = Wel * f_{yk} = 413.32 mKN$$
$$\frac{M}{M_{el}} + \frac{N}{N_{pl}} = 1$$

 $4.70 \le 7.312$

0k

Fig. 6. Interaction axil force and bending moment Interaction diagram under elastic limit state. Units in KN and KNm.

3) Axial force and bending moment values under plastic limit state.

Multi-layer method shall provide the axial and bending points which generate the interaction diagram in the plastic range. In Y-axis the ultimate plastic moment can be found and ultimate axial force in X-axis. These values and the shape factor are shown below:

$$N_{pl} = A * f_{yk} = 3947 KN$$

 $M_{pl} = Wpl * f_{yk} = 465.09 mKN$

Fig. 7. Axial force and bending moment Interaction diagram under plastic limit state. Units in KN and KNm.

4) Non-dimensional interactions diagrams.

Dividing every single point by ultimate axial and ultimate plastic value respectively, the non-dimensional diagrams can be achieved. In the case of the elastic diagram the equation that described the results is the following:

$$\frac{M}{M_{el}} + \frac{N}{N_{pl}} = 1$$

$$N = N' * N_{pl} \quad N' = [0,1]$$

$$M = M' * M_{pl} \quad M' = [0, M_{el}/M_{pl}]$$

$$\frac{M' * M_{pl}}{M_{el}} + N' = 1$$

Fig. 8. Non-dimensional axial force and bending moment Interaction diagram under elastic limit state.

Fig. 9. Non-dimensional axial force and bending moment Interaction diagram under plastic limit state.

As shown on the diagram represented in figure 9, the curve

Anales de Edificación, Vol. 1, Nº1, 1-6 (2015). ISSN: XXXX-XXXX

S. Rodriguez

is practically linear up to the axial point equal to 0.2. This aspect matches with technical reference consulted, and the reason can be attributed to little contribution of flanges to overall sectional flexural capacity.

Also in figure 9 another conclusion can be drawn and the explanation of why codes does not considered in flexural design values of axial forces with a magnitude less than 10% of the ultimate axial capacity. As it can be seen there is no practical reduction of the bending strength capacity associated with axial magnitudes below 10%.

5) Overlapped Interaction diagrams.

The consequence of overlapping the two diagrams is represented in figure 10.

Fig. 10. Overlapping Non-dimensional axial force bending moment Interaction diagrams.

In this particular case the value of the plastic area is 0.1379.

V. CONCLUSIONS

As demonstrated in this article the matlab programing software can be utilized to implement the Multi-Layer Method, and then providing good structural engineering solutions. It is also demonstrated in this article the advantages of the generation of the axial force-bending moment interaction programs for "I" section in plastic limit state, as a tool to obtained the plastic capacity when axil and bending acting simultaneously, by mean of the parameter "Plastic Area".

APPENDIX

close all

clear

%1. DATA II	NPUT	
1- 20		
11= 30	% DEPTH SECTIONcm	1
bf= 20	% WIDTH SECTION c	m
LW=1.2	% WEB IHK CH % FLENAGE THK cm	
fyk=3550	% STEEL YIELD LIM	IIT kp/cm^2
-		
nfala=20	% NUMBER OF LAYER	S IN ONE FLANGE
nfalma=20	% NUMBER OF LAYER	S IN THE HALF WEB
%2.OPERATI	ONS	
%2.1. PLAS	TIC ANALYSIS	
fala=tf/nfa	ala	% FLANGE THK FOR EACH LAYER
Laima=(11/2	-ti)/maima	S WEB IHR FOR EACH LAYER
n=nfala+nfa	alma	% TOTAL NUMBER OF LAYERS
liagrama_f	lector=zeros(n+1,1)	TRUE M-0 DENDING
liagrama a	vil=zeros(n+1 1)	IRSI VALUE M=0 BENDING
COLUMN VE	CTOR OF ZEROS AND F	IRST VALUE N=0 AXIAL
AXIAL CAP	ACITY FOR EACH LAYE	R.
RESULTS S	TORED IN VECTOR axi	lfibra
or 1=1.n if i<=1	nfala	
ax	ilfibra(i)=fala*bf*	fvk
end		-
if i>n:	fala	
ax	ı⊥fibra(i)=falma*tw	т*tүk
end and		
1104		
DISTANCE	FROM COG TO EACH LA	YER
RESULTS S	TORED IN VECTOR dis	tfibra
istfibra=	zeros(n+1,1)	
DISTANCE	TO FLANGES LAYERS.	
distfi	±a±a; bra(i)=h/2-(2*i-1)*	fala/2
nd		
DISTANCE '	TO WEB LAYERS	
or i=1:nf	alma	5) (0++ 1)+5-1 (0
aistfil	pra(1+nIala)=(h/2-t	*_1)*Ialma/2
*LOOPING F	OR CALCULATE AXIAL	AND BENDING FOR EACH LAYER
*LOOPING F axil_acum= flector_act	OR CALCULATE AXIAL 0 um=0	AND BENDING FOR EACH LAYER
LOOPING F uxil_acum= lector_ac TOTAL BEN or i=1:n	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA	AND BENDING FOR EACH LAYER
xil_acum= lector_acum TOTAL BENN or i=1:n if i:	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1	and bending for each layer Tion
xil_acum= lector_ac TOTAL BEN or i=1:n if i diag	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0	AND BENDING FOR EACH LAYER
xil_acum= lector_act TOTAL BEN or i=1:n if i: diag: end	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r acum=2*distfile	AND BENDING FOR EACH LAYER
TOTAL BEN TOTAL BEN Total Ben tor i=1:n total	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4
ALCOPING F axil_acum= flector_acu torial:n ; if i; ; end flecto: diagram diagram	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4
<pre>LOOPING FA xil_acum=: lector_act TOTAL BENN or i=1:n if i: diagram nd TOTAL AXL.</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION
TOTAL BEN in the second	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION
TOTAL BEN i diagra i di	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum
TOTAL BENN or i=1:n if i: diagra end flecto: diagra mnd TOTAL AXLI for i=1:n axil_a and	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_ama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum
<pre>LOOPING F xil_acum= lector_ac: TOTAL BENN or i=1:n diag: end flecto: diagram nd TOTAL AXL or i=1:n axil_a nd ONLY HALF</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil acum	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE
ACTION AND A CONTRACT AND A CONTRACTACT AND A CONTRACTACT AND A CONTRACTACT AND A CONTRACTACTACTACTACTACTACTACT	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i,1)=0 r_acum=2*distfibra(1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N oF AXIL, ACTING S	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING
<pre>xil_acum=: llector_ac: TOTAL BENN or i=1:n if i: diagrau nd TOTAL AXL or i=1:n axil_acum=: GENERATIO or i=1:n</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum 2D THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING
<pre>klooping P kxil_acum=: llector_ac: tor i=1:n if i: diagram flecto: diagram nd TOTAL AXI. or i=1:n axil_acum=: GENERATION or i=1:n if i=:</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE IMULTANEASLY WITH BENDING
<pre>ilector_ac: ilector_ac: torial:n i if i: diagra diagram d TOTAL AXI. or i=1:n axil_a only HALF GENERATION or i=1:n if i== ii: diagram d</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i,1)=0 r_acum=2*distfibra(1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=ax	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING til_acum/100
<pre>subooping F axil_acum=/ lector_ac: FTOTAL BEN: for i=1:n ; if i diagray flecto: diagray flecto: diagray for i=1:n axil_acum=/ conicitation for i=1:n if i== diagray for i=1:n axil_acum=/ flecto: for i=1:n if i== diagray flecto: flecto: diagray flecto: flecto: diagray flecto: flecto: diagray flecto: flecto</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=ax	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING cil_acum/100
<pre>kil_acum=: llector_ac: ToTAL BENN or i=1:n if i: diagrau nd ToTAL AXLL or i=1:n axil_acum=: GENERATIO or i=1:n if i==: if i==: if i=: if i=:</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_ama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=ax cum=axil_acum 2*cui	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE EIMULTANEASLY WITH BENDING Eil_acum/100 lfibra(1,i=1)
<pre>kilooping F kilacum=: lector_ac: TOTAL BENN for i=1:n if i: diagram nd TOTAL AXI. or i=1:n axil_a ONLY HALF kil_acum=: GENERATION or i=1:n if i=: dia if i>1 axil_a if i>1 axil_a</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_ama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=ax cum=axil_acum-2*axii ma_axil(i)=axid	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING sil_acum/100 lfibra(1,i-1) cum/100
<pre>klooping F axil_acum= flector_ac: kTOTAL BENN for i=1:n } diag: end tflecto: diagram md tTOTAL AXI. for i=1:n axil_acum= kGENERATION for i=1:n if i== diagram tf i>1 axil_acum= diagram diagram</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i,1)=0 r_acum=2*distfibra(1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi ma_axil(i,1)=axil_a	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING fil_acum/100 lfibra(1,i-1) cum/100
<pre>LOOPING F xil_acum= lector_ac: TOTAL BEN: or i=1:n</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_acum=2*distfibra(ma_flector(i,1)=0 r_acum=2*distfibra(1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING Hil_acum/100 lfibra(1,i-1) cum/100
<pre>LOOPING F xil_acum=: lector_ac: TOTAL BENN or i=1:n if i: diagrau flecto: diagrau nd TOTAL AXI: or i=1:n axil_aa nd ONLY HALF xil_acum=: GENERATIOO or i=1:n if i==: di if i>1 axil_aa diagrau end nd</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_ama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axi1_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE EIMULTANEASLY WITH BENDING Eil_acum/100 lfibra(1,i-1) cum/100
<pre>LOOPING P xil_acum= lector_ac: TOTAL BENN or i=1:n</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 r_ama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE DIMULTANEASLY WITH BENDING fil_acum/100 lfibra(1,i-1) cum/100
<pre>sloopING F xxil_acum= llector_ac: rotAL BENN is if i diagra end tTOTAL AXI. for i=1:n axil_acum= control AXI. for i=1:n if i== end if i>1 axil_acum= diagrau diagrau end end rotAL AXI. cor i=1:n if i== end if i>1 axil_acum= control axil_acum= diagrau diagrau end end end end control axil_acum= control axil_acum=</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi ma_axil(i,1)=axil_a LC ANALYSIS AND. MECHNUICU DEC	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum DD THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING MULTANEASLY WITH BENDING Milacum/100 lfibra(1,i-1) cum/100
<pre>kilooping F kxil_acum=: clector_ac: tor i=1:n if i: diagrau flecto: diagrau nd tor i=1:n axil_acum=: GENERATIO or i=1:n if i=: cend if i>i axil_acum=: GENERATIO or i=1:n if i=: end if i>i axil_acum=: GENERATIO or i=1:n if i=: end if i>i axil_acum=: GENERATIO or i=1:n axil_acum=: GENERATIO i = 1: content i = 1: cont</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING Sil_acum/100 lfibra(1,i-1) cum/100 PERTIES SHalf web beicht
<pre>LOOPING F xil_acum=: lector_ac: ToTAL BENN or i=1:n if i: diagrau flecto: diagrau nd TOTAL AXI. or i=1:n axil_a. nd ONLY HALF xil_acum=: GENERATIOO or i=1:n if i==: di if i>1 axil_a. end if i>1 axil_a. end nd 2.2 ELAST STRENGTH 1=h/2-tf </pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_acum-2*axi ma_axil(i,1)=axil_acum-2*axi AND MECHANICAL PRC (h-2*tf)*tw	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE MULTANEASLY WITH BENDING fil_acum/100 lfibra(1,i-1) cum/100 PPERTIES %Half web height
<pre>shooping P xxil_acum=: flector_ac: storal BENN for i=1:n s diagra: diagram flecto: diagram rTOTAL AXI. for i=1:n axil_a control HALF (source) control HALF (source) diagram dif i>1 axil_a diagram dif i>1 axil_a diagram fi i>1 axil_a diagram dif i>1 axil_a diagram fi i>1 axil_a fi i>1 axil_a i i i i i i i i i i i i i i i i i i i</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PROC (h-2*tf)*tw *(h^3/8)-hl^3*(bf-t	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING Sil_acum/100 lfibra(1,i-1) cum/100 PERTIES %Half web height w)/3) %Second moment of inertia
<pre>sloopING F xxil_acum= llector_ac: rotAL BENN is if is diag: end flecto: diagram flecto: diagram fortAL AXL for i=1:n axil_acum= GENERATION for i=1:n if i== end if i>1 axil_acum= GENERATION for i=1:n if i== end if i>1 axil_acum= content signer signer content if i=2 bf*tf+ ix=2*(bf*d x=1x/(0.5)</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum DD THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING HILACUM/100 lfibra(1,i-1) ccum/100 PFERTIES %Half web height w)/3) %Second moment of inertia
<pre>txil_acum=: ilector_ac: TOTAL BENN for i=1:n if if if if idagrau flecto: diagrau nd TOTAL AXL for i=1:n axil_acum=: GENERATIO or i=1:n if i==: dii if i>1 axil_acum=: GENERATIO or i=1:n if i==: dii strand if i>1 axil_acum=: GENERATIO if i==: dii if i>1 axil_acum=: GENERATIO if i==: dii if i>1 axil_acum=: GENERATIO if i==: dii if i>1 axil_acum=: GENERATIO if i==: dii if i>1 axil_acum=: GENERATIO if i==: dii if i==: strand if i>1 axil_acum=: GENERATIO if i==: strand if i>1 axil_acum=: strand i=: strand i=: strand i:: strand i:: strand i:: strand i:: strand i:: stran</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /1e4	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE EMULTANEASLY WITH BENDING Half webhaight %Half webhaight %Half webhaight %Elastic bending moment
<pre>LOOPING F xil_acum=: lector_ac: TOTAL BENN or i=1:n if i: diagrau flecto: diagrau nd TOTAL AXI. or i=1:n axil_a ONLY HALF Xil_acum=: GENERATIOU or i=1:n if i==: di. end if i>1 axil_a: diagrau end nd 2.2 ELAST STRENGTH 1=h/2-tf x=2*bf*tf+ x=2*(bf/3 x=Ix/(0.5 el=fyk*Mx u=fyk*A/1</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) 00	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE DIMULTANEASLY WITH BENDING Cil_acum/100 lfibra(1,i-1) cum/100 PFERTIES %Half web height w)/3) %Second moment of inertia %Elastic bending moment %Axial capacity
<pre>LOOPING F xil_acum= lector_ac: ToTAL BENN or i=1:n if i: diagram flecto: diagram flecto: diagram flecto: diagram flecto: diagram flecto: diagram flecto: axil_a diagram if i>1 axil_a diagram end flet/2-tf =2*bf*tf+ =2*bf*tf+ x=2*(bf/3 x=Ix/(0.5 k=1)k*A/1 2 OUNUTE </pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3,8)-h1^3*(bf-t *h) /1e4 00	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum DD THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING Mil_acum/100 lfibra(1,i-1) cum/100 PFERTIES %Half web height w)/3) %Second moment of inertia %Elastic bending moment %Axial capacity
<pre>sloopING F xxil_acum= llector_ac: rotAL BENN is if i diagram diffector diagram end rotAL AXL for i=1:n axil_acum= GENERATION for i=1:n if i== end if i>1 axil_acum= GENERATION for i=1:n if i== end if i>1 axil_acum= content screener tif i>1 axil_acum= diagram diagram end end end end end end strength ti=h/2-tf ti==tyk*Wx hu=fyk*Wx hu=fyk*Wx</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /le4 00	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING HIDITANEASLY W
<pre>LOOPING F xil_acum=: lector_ac: ToTAL BENN or i=1:n</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axi1_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /Le4 00 XIAL-BENDING INTERA	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE EMULTANEASLY WITH BENDING Half webhaight (ii]_acum/100 PERTIES %Half web height %Half web height %Half web height %Lastic bending moment %Axial capacity
<pre>sLOOPING F axil_acum=: flector_ac: % TOTAL BENN for i=1:n % diagra: end % TOTAL AXI. for i=1:n axil_acum=: % CENERATION for i=1:n if i==: di. end if i>1 axil_acum=: % STRENGTH 11=h/2-tf k=2*bf*tf+ ix=2*(bf/3 Xx=Ix/(0.5 % el=fyk*Mx Ju=fyk*A/1 ;3. OUTOUT</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) 00 XIAL-BENDING INTERA	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE FINULTANEASLY WITH BENDING fil_acum/100 lfibra(1,i-1) cum/100 PPERTIES %Half web height %Half web height %Half web height %Elastic bending moment %Axial capacity CCTION DIAGRAM.
<pre>sLOOPING F axil_acum=: flector_ac: % TOTAL BENN for i=1:n % diagra: end % TOTAL AXI. for i=1:n axil_acum=: % CENERATION for i=1:n if i==: % diagra: % d</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a um=axil_acum-2*axim ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /1e4 00 XIAL-BENDING INTERA rama_axil,diagrama_	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum DD THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING HIDUTANEASLY WITH BENDING Sil_acum/100 Ifibra(1,i-1) cum/100 PFERTIES %Half web height w)/3) %Second moment of inertia %Elastic bending moment %Axial capacity CTION DIAGRAM. flector,'Facecolor','c')
<pre>incode like in the second second</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi um=axil_acum-2*axi ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /1e4 00 XIAL-BENDING INTERA rama_axil,diagrama_ ama_axil,diagrama_	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING Sil_acum/100 lfibra(1,i-1) cum/100 PPERTIES %Half web height %Half web height %Elastic bending moment %Axial capacity CCTION DIAGRAM. flector,'Facecolor','c') lector)
<pre>sloopING F xxil_acum=: flector_ac: for i=1:n for i=1:n flecto: diagrau flecto: diagrau flecto: diagrau end flecto: diagrau sonly HALF tor i=1:n if i=: di. for i=1:n if i=: di. for i=1:n if i=: di. fi i: end if i>1 axil_aa end flecto: for i=1:n if i=: di. fi i=: di. fi i>1 axil_aa end flecto: flec</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axi1_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axi cum=axil_acum-2*axi ma_axil(i,1)=axil_acum-2*axi AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /le4 00 XIAL-BENDING INTERA rama_axil,diagrama_ ama_axil,diagrama_	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)*flector_acum lector_acum/le4 SECTION axil_acum ED THE FINAL RESULT SHALL BE DOUBLE HMULTANEASLY WITH BENDING HIL_acum/100 lfibra(1,i-1) cum/100 PERTIES %Half web height %Half web height %Half web height %Lastic bending moment %Axial capacity CTION DIAGRAM. flector, 'Facecolor','c') lector)
<pre>sLOOPING P axil_acum=: flector_ac: % TOTAL BENN for i=1:n % diagra: end % TOTAL AXIL for i=1:n axil_acum=: % ONLY HALF % ONLY HALF % ONLY HALF % ONLY HALF % ONLY HALF % ONLY HALF % AXIL_acum=: % CENERATION for i=1:n if i==: di. end if i>1 axil_acum=: % CENERATION for i=1:n if i=: di. end end % 2.2 ELAST % STRENGTH 11=h/2-tf % 4=12%*Wx % u=fyk*Mx % u=fyk*Mx % u=fyk*A/1 % 3. OUTOUT % PLASTIC A: % DIAGONAL % DIAG</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a cum=axil_acum-2*axim ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRO (h-2*tf)*tw *(h^3/8)-h1^3*(bf-t *h) /1e4 00 XIAL-BENDING INTERA ama_axil,diagrama_ ama_axil,diagrama_ grama de iteración i1 [KN1')	AND BENDING FOR EACH LAYER TION (, 1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum D THE FINAL RESULT SHALL BE DOUBLE MULTANEASLY WITH BENDING Mil_acum/100 Ifibra(1,i-1) cum/100 PPERTIES %Half web height %J/3) %Second moment of inertia %Elastic bending moment %Axial capacity CCTION DIAGRAM. flector,'Facecolor','c') lector) Momento - Axil Plástico','Fontsize',16)
<pre>%LOOPING F axil_acum= flector_ac %TOTAL BENN for i=1:n % if i % diagra end %TOTAL AXI. for i=1:n axil_acum= %GENERATION for i=1:n if i== di. end %ONLY HALF axil_acum= %GENERATION for i=1:n end if i>1 axil_acum= %STRENGTH h1=h/2-tf A=2*bf*tf+ Nu=fyk*MX Nu=fyk*MX %3. OUTOUT %PLASTICA %plasticA %label('Ax ylabel('F); %ICACATA 'STRENGTH h1=('Diagram) %label('Ax) ylabel('Ax)</pre>	OR CALCULATE AXIAL 0 um=0 DING MOMENTS GENERA ==1 rama_flector(i,1)=0 r_acum=2*distfibra(ma_flector(i+1,1)=f AL CAPACITY OF THE cum=axilfibra(1,i)+ SECTION IS COMPUTE 2*axil_acum N OF AXIAL ACTING S 1 agrama_axil(i,1)=axil_a Cum=axil_acum=2*axim ma_axil(i,1)=axil_a IC ANALYSIS AND MECHANICAL PRC (h-2*tf)*tw *(h^3,8)-h1^3*(bf-t *h) /1e4 00 XIAL-BENDING INTERA rama_axil,diagrama_ ama_axil,diagrama_ grama de iteración i1 (KN]') ector [KNml')	AND BENDING FOR EACH LAYER TION i,1)*axilfibra(1,i)+flector_acum lector_acum/le4 SECTION axil_acum DD THE FINAL RESULT SHALL BE DOUBLE SIMULTANEASLY WITH BENDING Mil_acum/100 lfibra(1,i-1) cum/100 PFERTIES %Half web height w)/3) %Second moment of inertia %Elastic bending moment %Axial capacity CCTION DIAGRAM. flector,'Facecolor','c') lector) Momento - Axil Plástico','Fontsize',16)

%ELASTIC AXIAL-BENDING INTERACTION DIAGRAM.

6

- figure y=[0,Mel] x=[Nu,0] plot(x,v) plot(x,y)
 grid on
 title('Diagrama de iteración Momento - Axil Elástico','Fontsize',16)
 xlabel('Axil [KN]')
 ylabel('Flector [KNm]') % PLASTIC-ELASTIC OVERLAPPING DIAGRAMS figure y=[0,Mel] x=[Nu,0] area(x,y,'FaceColor','c') hold o plot(diagrama_axil,diagrama_flector,'b') grid title('Diagrama de iteración Momento - Axil Elástico Vs. Plástico','Fontsize',16)
 xlabel('Axil [KN]')
 ylabel('Flector [KNm]') % PLASTIC-ELASTIC OVERLAPPING DIAGRAMS NON-DIMENSIONAL figure diagrama_axil_adi=diagrama_axil/Nu diagrama_flector_adi=diagrama_flector/diagrama_flector(n+1,1) plot(diagrama_axil_adi,diagrama_flector_adi,'b') hold or y=[0,Mel/diagrama_flector(n+1,1)]
- y-to,Mer/diagrama_filector(Mv1,1))
 plot(x,y,'r')
 grid on
 title('Diagrama de iteración Momento Axil Elástico Vs.
 Plástico','Fontsize',16)
 xlabel('Axil [adim]')
 ylabel('Flector [adim]')

% PLASTIC AREA, DIFERENCE BETWEEN PLASTIC AND ELASTIC

%Area UNDER STRAIGHT LINE area_recta=0.5*Mel/(diagrama_flector(n+1,1))*Nu/Nu %AREA UNDER PLASTIC CURVE area_curva=trapz(abs(diagrama_axil_adi),abs(diagrama_flector_adi)) disp('el area y por tanto la reserva plastica del perfil es_:') area_plastica=abs(area_curva+area_recta) Diagramas de interacción axil-flector en secciones doble "T"... (parte I). Axial-bending interaction diagrams for "I" sections... (part I).

VI. ACKNOWLEDGMENT

I would like to thank to my fellow Eriberto Salumbides (Civil Engineer) for all his valuable contribution to this article. Without his critical eye the final quality of this article in English version, would be clearly reduced.

REFERENCES

- Simoes da Silva, L.; Simoes, R.; Gervásio, H. (2010) Eurocode 3, 1-1, 9.
- Subramanian, N. (2008). Design of Steel Structures. Oxford University press
- Álvarez Cabal, R.; Benito Muñoz, J.J. (2005). Ejercicios de Estructuras Metálicas y Mixtas Volumen I: Cálculo Editorial Servicio de Publicaciones de ETSIIM-UPM.
- *Eurocode 3: Design of Steel Structure Par 1-1: General rules and rules for buildings (2005).*

European Standard EN 1993-1-1(2005).