1. INTRODUCTION

Spain is a country with an extremely long history of pastoralism. As a result, pastures cover a high percentage of its territory. Pastures provide a wide variety of ecosystem (provisioning, regulating and cultural) services, and therefore significantly contribute to the Spanish society well-being. They also support important economic sectors (e.g. agriculture, livestock, hunting) and play a key role in Sustainable Rural Development. Finally, some types of natural and semi-natural pastures are considered Habitats of Community Interest by the European Union.

The Spanish Society for the Study of Pastures (SEEP), founded in 1959, has been working for almost 60 years with the aim of promoting the knowledge and improvement of...
Spanish pastures. SEEP aims to address every aspect related to pastoral science: types, ecology and functions of pastoral ecosystems; plant production; feeding value; animal production; economics, sociology and agricultural policy, etc. However, until now a document summarizing basic information about the Spanish pastures, a first step to integrate their knowledge, was lacking.

Following the idea of FAO’s Country Pasture Profiles, this work provides a broad overview of relevant information about the Spanish pastures and the livestock and wild ungulate rearing systems they support.

2. SPAIN

2.1. Location, government and administration

Spain is located in southwestern Europe. It borders France and Andorra to the north, Portugal to the west and Morocco to the south. Part of its territory is comprised of islands (Canary Islands in the Atlantic Ocean and Balearic Islands and some other small islands in the Mediterranean Sea). There are also two autonomous cities, Ceuta and Melilla, located in North Africa (Figure 2.1).

Spain has an area of 505,992 km², the second largest country among the European Union member states. It is a democratic country organized as a constitutional monarchy. For administrative purposes it is composed of 17 Autonomous Communities and two autonomous cities (Figure 2.2). Autonomous Communities are subdivided into provinces, of which there are 50 in total.

2.2. History, population and land ownership

Humans have inhabited Spain since some 1.2 Ma (Mega annum) (*Homo antecessor*, Atapuerca, northern Spain). In the Neolithic period, Iberians and Celts populated most of the Iberian Peninsula. After being submitted to strong influences by the Phoenicians, Carthaginians and Greeks for around seven centuries before Christ (BC), Iberia came under the rule of the Romans around 200 yr BC. In the early Middle Ages Iberia was conquered by Germanic tribes and later (in 711) by Moorish invaders from northern Africa. After more than seven centuries of war and peace (the Reconquista), the Christians regained control of the Peninsula in 1492, under the reign of the Catholic Monarchs, who unified Spain as a country for the first time. They also promoted the “discovery” and colonization of America. The powerful Spanish world empire of the XVI and XVII centuries was followed by a period of decadence in the XVIII and XIX centuries. The long lasting influence of the Reconquista (when fire was used as a weapon and a way to remove forests and therefore the risk of ambush) and the Mesta (1273 – 1836), a powerful association of sheep holders, resulted in a dramatic decrease of the forest cover of Spain, on
the one hand, and in a huge expansion of grazing lands, infrastructures (e.g. *cañadas*, or traditional rights-of-way for transhumant herds) and pastoral traditions, on the other (Figure 2.3). Transhumance, aimed at efficiently using the temporary variable productions of Mediterranean and temperate pastures, has been a major pastoral practice for centuries (Montserrat and Fillat, 1990). Its ecological, economic, and social effects have been remarkable and still remain, even though transhumance is today a marginal practice.

During the 20th century, Spain remained neutral in World War I and II but suffered a terrible civil war (1936-1939) followed by a dictatorship led by General Franco until his death in 1975. After a peaceful transition to democracy and a rapid social and economic modernization, Spain joined the European Economic Community (renamed European Union in 1992) in 1986, which in turn has introduced deep changes in social, economic and environmental structures and policies. A severe economic recession that began in 2008 led the Spanish government to take measures with the aim of reducing a large budget deficit and a very high (26%) unemployment rate.

The Spanish population, around 47 million people, is unevenly distributed over its territory. While there are high population densities (more than 500 people/km²) around the major cities (Madrid, Barcelona, Bilbao) and almost all along the coast, there are still large, thinly populated (less than 30 people/km²) areas, mostly located in central Spain, whose population is actually decreasing. Some 62% of the population is dedicated to the tertiary sector (increasing), 31% to the secondary sector (rather stagnating) and 7% to the primary activities (decreasing).

About 75% of the land in Spain is privately owned. The State, Autonomous Communities and Municipalities own 20% of the Spanish territory, most of it being non-cropped land: forest, woodland, scrubland or permanent pasture. Common land in Spain is usually permanent grasslands used as pasture for livestock. The number of agricultural holdings has decreased for the last decades, while their average individual area has increased. According to the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA, 2015a), 9% of the Spanish territory is occupied by urban or industrial uses, 34% by agricultural or arable areas and the rest (67%) by non-agricultural areas: forest, woodland, scrubland, natural and semi-natural grassland, rocky or sandy areas and water bodies (Figure 4.1).

3. ECOLOGICAL CONDITIONS

3.1. Topography

Mainland Spain is a land of high plateaus and mountain areas. Most mountain ranges, formed during the Alpine (or Alpide) orogeny, some 25 Ma ago, are oriented in an east-west direction. Therefore, they have resulted in serious obstacles for animal and plant migrations in past climate changes, and especially during the glaciations of the Quaternary. The Pyrenees, with some peaks over 3,300 m, and the Cantabric Mountains (highest peak: 2,650 m) are located in northern Spain. The Central and Iberic Systems, with peaks over 2,000 m are located in Central Spain, as well as the Montes de Toledo and Sierra Morena, with considerably lower summits, below 1,500 m. The Baetic Ranges, a complex group of mountain ranges, are located in southeastern Spain. Their highest summit (also the highest in the Iberian Peninsula) is the Mulhacén (3,478 m), located in Sierra Nevada, the Penibaetic System. The highest point in Spain is the Teide (3,718 m), in Tenerife, Canary Islands. The Meseta is a broad, high plateau located in the centre of the Iberian Peninsula, which is surrounded by mountain systems.

The Iberian Peninsula waters flow into two seas: the Atlantic Ocean and the Mediterranean Sea. The watershed line between them crosses the Peninsula from north to south, being clearly displaced eastward. As a result, the extent of both watersheds is unequal, the Atlantic being much bigger (more than twice the
size) than the Mediterranean. There are several major rivers: the Miño, Duero, Tagus, Guadiana and Guadalquivir flow westward and end in the Atlantic Ocean; the Ebro flows eastward and empties into the Mediterranean Sea (Figure 3.1).

3.2. Geology and soils

The Iberian plate is located between the Eurasian and the African plates. The Iberian Peninsula has constituted an independent secondary plate, segregated from the Eurasian plate since the Cretaceous period (more than 100 Ma). After the Alpine orogeny, it has remained united to the Eurasian plate and is separated from the African plate by the narrow Strait of Gibraltar. The Canary Islands have been formed by an intense and almost continuous volcanic activity since the Miocene.

The Spanish geological substrate is highly diverse. Geological surface layers cover all periods, from the Pre-Cambrian to the Quaternary. Palaeozoic acidic materials, deformed by the Hercinian orogeny, are the original components of the Iberian plate and outcrop mostly on western Iberia in the so-called Hesperian Shield, which is the core of the Iberian Peninsula. Sedimentary (and alkaline) rocks from the Secondary and Tertiary periods are dominant on eastern Spain and the Balearic Islands. The Alpine orogeny of the late Mesozoic period led to the formation of the mountain ranges of the Alpide belt, such as the Baetic Cordillera, the Cantabrian Mountains and the Pyrenees. There is also one more basic geologic assembly constituted by more recently originated (mostly Quaternary) and not deformed materials.

As a consequence of its mountainous nature and highly diverse geological substrates, the pattern of soil types in Spain is extremely intricate, even within relatively small areas. And this, in turn, contributes to the varied patterns of agriculture and land use. Acidic nutrient-poor soils dominating in western Spain have led to forest and pastoral landscapes, while fertile soils, dominant on the Meseta and eastern Spain, have led to agricultural landscapes, sometimes under the form of intricate patchworks of cropland, forest and scrubland as a result of a rough topography.

3.3. Climate

The climate of Spain is roughly determined by its geographical position and topographic characteristics. The dominant winds are the so-called westerlies: western winds. Thus, the most important precipitations originate from the Atlantic Ocean and show a strong seasonality, while being also affected by the distribution of mountain ranges. They have less influence in eastern Spain, where the influence of the Mediterranean Sea is greater. Therefore, according to the Bioclimatic Map of Europe (Figure 3.2) and the Worldwide Bioclimatic Classification System (Rivas-Martínez and Rivas-Sáenz 2014), the dominant bioclimatic type is Mediterranean pluviseasonal, with a minimum of two consecutive dry summer months. Temperate bioclimates (without or with less than two summer dry months), which dominate Central and Western Europe, affect exclusively the northern part of the Iberian Peninsula as well as the Central and Iberic Ranges. Areas with summer drought under two months are considered as sub-Mediterranean. Mediterranean xeric types are concentrated in some areas of eastern Iberia, especially the low Ebro basin and southeastern Iberia, and the Canary and Balearic Islands. The only European areas affected by Mediterranean desertic types are located in a few scattered locations in southeastern Spain.

The thermoclimatic belts represent the distribution of the thermic regimes according to their influence on vegetation types. They are determined through the thermicity index (Rivas-Martínez and Rivas-Sáenz 2014). Their names are constituted by a prefix (infra-, thermo-, meso-, supra-, oro- and cryoro-, according to a scale of increasing cold) followed by the name of the bioclimate type. Infra- and thermo- types are frost-free; meso- is affected by light freezing and supra- by rather intense freezing. Oro- is affected by such an intense cold that the potential vegetation is taiga-like (coniferous forest) or shrub-like (tundra). In the cryoro- thermoclimatic belt, the cold is so severe that the potential vegetation is mountain grassland with or without dwarf cushion-shaped woody plants. The distribution of thermoclimatic belts in Spain is showed in Figure 3.3.

3.4. Biogeography

There are four Biogeographic Regions in Spain. The Alpine is present only in the Pyrenees; the Atlantic, in northern and northwestern Spain; the Mediterranean dominates over most of the Iberian Peninsula and the Balearic Islands, and the Macaronesian in the Canary Islands (Figure 3.4).
FIGURE 3.2. Bioclimatic map of Europe. Spanish Bioclimates (Rivas-Martínez & Rivas-Sáenz, 2014).

FIGURE 3.3. Bioclimatic map of Spain. Thermoclimatic belts (Rivas-Martínez et al. 2004).
3.5. Vegetation

The potential vegetation of Spain is mostly forest. Deciduous forests (Quercus robur, Q. petraea, Fagus sylvatica, Betula, Acer, …) dominate in northern Spain, and also sometimes in mountain ranges of the centre and south of the Iberian Peninsula, where the bioclimate is temperate (Figure 3.5), but also on valley bottoms, over deep and wet soils (Populus, Salix, Fraxinus angustifolia, …) (Figure 3.6).

Sclerophyllous evergreen forests (Figure 3.7) grow under Mediterranean bioclimates, being holm oak (Quercus rotundifolia) the most abundant tree species of the Iberian Peninsula. On acidic soils and under less continental climate, cork oak (Quercus suber) is another important Mediterranean tree species, both in Spain and Portugal.

Semi-deciduous forests (Quercus pyrenaica, Q. faginea, Q. pubescens, …) are present under sub-Mediterranean bioclimates (Figure 3.8).

Conifers dominate immediately under the timberline, both in oro-temperate (Pinus uncinata, P. sylvestris) and oro-Mediterranean (P. nigra) thermo-climatic belts, but also under dry or semi-arid ombro-types (P. halepensis), hard continental climates (Juniperus thurifera) and over rocky, sandy and ultra-acidic or ultra-basic soils (Pinus pinea, P. halepensis). P. canariensis sets the timberline in the Canary Islands at some 2500 masl under meso-Mediterranean thermo-climate (Figure 3.9).

However, the long history of human activity in Spain has resulted in a dramatic decrease of the forest cover. As a consequence,
the forest area with a canopy cover over 20% amounts only to 30% of the Spanish territory (mostly on terrain unsuitable for agriculture), although it is recovering rapidly. A significant part of the forest area is included in patchwork landscapes, alternating forest and woodland patches with scrubland, grassland and cropland.

Permanent scrub is the potential vegetation both in the upper oro-temperate and oro-Mediterranean belts (high mountain ranges) as well as under semiarid ombro-climates (Ebro depression, South-eastern Spain and Canary and Balearic Islands) (Figure 3.10).

The areas submitted to cryoro-temperate and cryoro-Mediterranean bioclimates show a potential vegetation constituted
by graminoid and dwarf-camaephyte grassland-like communities (Figure 3.11).

3.6. Biodiversity

Spain is most probably the European Union (EU) Member State with the highest level of ecological and biological diversity (European Commission, 2016). A significant part (28%) of its territory (14.8 Mha) is protected under different legal figures, most of them included in the European Nature 2000 network, and flora has around 10,000 taxa, with a high percentage of endemisms. Part of the Spanish biological diversity is due to its location at intermediate latitude and between two continents, in addition to its natural ecological diversity and its long history of climatic and topographic change for millions of years.
However, Spain has been deeply transformed by a long history of human population and activity (fire, agriculture, livestock grazing and browsing, etc.). As a consequence, much of its current high biological diversity is dependent on traditional land-use systems and the so-called cultural landscapes and High Nature Value Farmland (Figure 3.12).

Spain holds 13 of the 31 Habitat Types of Community Interest listed in Group 6 (Natural and semi-natural grassland formations) as well as many other included in Groups 1 (Coastal and halophytic habitats), 2 (Coastal sand dunes and inland dunes), 3 (Freshwater habitats), 4 (Temperate heath and scrub), 5 (Sclerophyllous scrub) and 6 (Forests), which are also used for livestock rearing through grazing and browsing.

Extensive livestock rearing has been an essential tool in modelling Spanish cultural landscapes and in creating and preserving most of its rich environmental and cultural heritage (Montserrat, 2008). As a result, the preservation of much of the terrestrial Mediterranean flora, fauna and habitats protected under European Directives depends upon extensive livestock management models (Caballero et al., 2011; San Miguel, 2016). Indeed, transhumant sheep herds have strongly contributed to increase and preserve a strikingly high level of diversity in Spanish grasslands. Manzano et al. (2005) and Manzano and Malo (2006), report figures of over 150,000 seeds being transported by each transhumant sheep every year through both endozoochory and epizoochory. In addition, pastoralism plays an essential role in fire prevention (Ruiz-Mirazo et al., 2009; Ruiz-Mirazo and Robles, 2012) and supports major cultural, social and economic aspects that are essential for Sustained Rural Development in Spain.

3.7. Agro-ecological zones

Many classifications have been made of the Spanish agro-ecological zones. Almost all of them consider three essential factors: climate (temperate, Mediterranean continental, Mediterranean oceanic or Mediterranean xeric), soil fertility (fertile soils or acidic nutrient-poor soils) and topography. As a result, a broad classification could be summarized as follows:

- **Temperate: North-Northwest**
 Temperate climate, without or almost without dry season. Natural forests (usually deciduous) and scrub (heath, gorse, broom) prevail on mountainous areas, while cropland (sometimes sustaining forage crops), permanent grasslands and forest plantations dominate on low, flat territories. The most important livestock species is cattle and, to a much lesser extent, horses and sheep.
Mediterranean continental: central Spain

Mediterranean continental climate. The land-use pattern depends on soil fertility. There are two broad possible situations:

Fertile soils: cropland dominates on plains and gently sloping lands. Permanent Mediterranean semi-natural pastures, scrublands and forests (perennial sclerophyllous, semi-deciduous or coniferous) thrive on steep slopes or rocky areas, unsuitable for agriculture, usually interspersed with croplands. Dairy sheep (goats to a much lesser degree), usually feeding on agricultural products and byproducts as well as on nearby rangelands, are the most important livestock. Extensive beef cattle rearing is important on mountain areas, while intensive cattle feedlots are usually located on well communicated flatslands.

Acidic, poor-nutrient soils: cropping is usually possible only on long (2-4 years) rotations. Pastoral landscapes, usually with scattered trees (extensive cattle or sheep dehesas) occupy gently sloping lands and sometimes plains. Mountains are covered by forests, scrub or, most frequently, patchworks. Big game (red deer, wild boar and other wild ungulates) is an important objective of large estates. Extensive beef-cattle rearing is the most important livestock farming type on mountain areas. Dairy goat farms may use scrubland pasture resources. Extensive Iberian swine farms are important on less continental (oceanic) areas of western and southwestern Spain, where acorn yields are higher.

Mediterranean coastal border

Mediterranean maritime mild climate, with low-medium rainfall. Eastern Spain and Balearic Islands. Irrigated crops dominate there where irrigation is possible, usually low river basins. Extensive rain-fed croplands occupy those flatslands where irrigation is not possible. Mosaics of scrub, Mediterranean grasslands, woodlands and forests thrive on steep slopes and rocky areas, unsuitable for agriculture, usually interspersed with croplands. The most important livestock systems are extensive sheep and goat farms on rangelands and intensive feedlots in agricultural, well-communicated areas. Byproducts from intensively managed cropland may be important for livestock feeding. Extensive livestock has declined dramatically in recent decades.

Warm (subtropical) areas (southeastern Mediterranean coastal provinces and Canary Islands)

Mediterranean subtropical climate, usually semiarid. Southeastern Iberian Peninsula and Canary Islands. Intensively managed cropland (sometimes cultivation under plastic) is a major form of land use on plains. Dairy goat (sheep to a much lesser degree) farms may use scrubland pasture resources as well as agricultural byproducts. Intensive feedlots are sometimes present on agricultural, well-communicated areas. Extensive livestock has declined dramatically in recent decades.

4. THE PASTURE RESOURCE

4.1. Breakdown of the Spanish territory by land uses

The Spanish territory can be separated into three broad classes (Figure 4.1): urban areas and water bodies (purple), cropland (orange) and natural or semi-natural areas (**monte** = **terreno forestal**) (different shades of green). The area covered by urban areas and water bodies amounts to 9% and shows a significant increase over the last decades due to urbanization processes, especially in coastal areas and on the outskirts of large cities.

Cropland covers, approximately, 34 % of the territory and shows a slight, although continuous, decrease. It comprises both cultivated and fallow land. Fallow land can be defined as land under a system of rotation, whether worked or otherwise, not giving any harvest during the whole accounting year. Land set aside and not cultivated is also included in this category as well as set-aside lands with green cover (pastureland). The use of fallow land and arable stubbles for grazing is a widespread practice in Spain.

Natural and semi-natural land has been classified into five types:

- Natural meadow (**prado**): natural or semi-natural grassland often associated with the conservation of hay or silage. It grows under humid climate and/or on moist soils (without or almost without dry period) and may be harvested both by mowing or grazing. The extent of this grassland category is slightly, although continuously, decreasing.
• **Rough grassland** (*pastizal*): natural or semi-natural grassland growing under sub-humid, dry, semiarid or arid climates and dominated by annual or summer withering perennial grasses. They cannot be harvested by mowing. Its area is slightly, although continuously, decreasing.

• **Rough grazing rangeland** (*erial a pastos*): uncultivated land covered by sparse rough grass and scrub vegetation as a consequence of natural succession, following the abandonment of agricultural use, and absence, or near absence, of grazing activity (stocking rate under 10 kg of live weight per hectare). Its area is also slightly, although continuously, decreasing.

• **Scrubland**: land dominated by multi stemmed woody plants usually non exceeding 5 m in height. Its area has increased significantly over the past decades.

• **Forestland and Woodland**: land covered by trees with a canopy cover over 10%. Its area has increased significantly over the past decades.

4.2. Pasture classification

Pastureland has been defined as land (and the vegetation growing on it) devoted to the production of introduced or indigenous forage for harvest by grazing, cutting, or both (Allen et al., 2011). Since Spain is a largely Mediterranean country where green grass is scarce in summer, due to drought, and in winter, as a result of cold temperatures, there are other significant sources of food (apart from grass), both for livestock and for wild ungulates, such as browse, mast and even flowers (Ferrer et al., 2001). Indeed, browse and mast are essential sources of food for both wild ungulates and extensive livestock farming in summer and winter all over Mediterranean (and also non-Mediterranean) Spain. As a consequence, a classification of the Spanish pasture is presented in Figure 4.2.

4.2.1. Natural and semi-natural grasslands

Natural grasslands (pasturelands might provide grass and/or browse) have been defined as ecosystems dominated by indigenous or naturally occurring grasses and other herbaceous species used mainly for grazing by livestock and wildlife (Allen et al., 2011). Semi-natural grasslands are managed ecosystems dominated by indigenous or naturally occurring grasses and other herbaceous species (Allen et al., 2011). The difference between natural and semi-natural grasslands lies, therefore, on the management regime and may be quite subtle. Consequently, they will be considered together in this section.

Herbaceous grasslands (meadows, rough grassland and rough grazing rangeland) cover an area of 10.02 Mha (20% of the Spanish territory). They are dominated by herbaceous species but they usually include a significant woody component. Spain, accounting for 33.3% of the total European Union permanent grasslands, is indeed the most important contributor (Huyghe et al., 2014). Most of it is used, to a greater or lesser degree, for grazing by livestock and/or wild ungulates. However, it also provides other highly valuable regulation and cultural ecosystem services. Furthermore, a significant part of the Spanish scrubland (9.34 Mha) and forestland and woodland area (18.37 Mha) provide browse for livestock and wild ungulates, especially in summer and winter.

FIGURE 4.2. Classification of Spanish pastures.
The area of natural and semi-natural grasslands in Spain shows a slight, albeit continuous, annual decline of about 1-2% since the beginning of the millennium. The decrease is slightly higher in meadows and rough grazing rangelands (e.g., pastos) (2%) than in rough grasslands (approximately 1%) (MAGRAMA, 2015a).

San Miguel (2001, 2016) describes four main types of herbaceous natural and semi-natural grasslands in Spain (Figure 4.2).

- **Natural upland summer grasslands**

 Natural upland summer grasslands (pastos de puerto) (Figures 4.3 and 4.4) usually grow over the timber line (1800 - 2200 masl in the Iberian Peninsula) on high mountain summits and slopes where neither sowing nor cultivating is possible. However, primary timber lines have been frequently brought down to lower altitudes as a consequence of the combined effects of grazing by wild ungulates and livestock and felling and burning by humans. Thus, natural upland summer grasslands may even be found at relatively low elevations (e.g., 1000-1500 masl). Cold temperatures throughout most of the year restrict vegetative growth to summer, and consequently forage is harvested only by summer grazing. The upper limit for cattle grazing is usually defined by the limit between oro- and cryooro-thermotypes: around 2000 masl in northern and central Spain and 2700 in Sierra Nevada, southeastern Spain. Therefore, sheep grazing is almost the only possibility under cryo-thermotypes, and is rapidly decreasing due to the disappearance of traditional shepherds. However, upland grasslands are not mere productive systems. They also sustain high levels of biodiversity and endemisms and provide highly valuable regulation and cultural ecosystem services, especially recreation, outdoor sports and tourism (Fillat et al., 2008; Montes, 2012). As a consequence, most natural upland summer pastures are considered habitat types of Community interest, and therefore protected by the European Union (EU) Habitats Directive (92/43/EEC).

 The most important natural upland summer grasslands in Spain are represented by the following vegetation types (phytosociological classes) (see Rivas-Martínez, 2011):

 - **Caricetea curvulae**: acidophile grasslands (they also thrive on calcareous rock materials when snow cover, and hence soil leaching, is rather intense: e.g., leeward slopes), with Eurosiberian (Alpine) flora. Pyrenees, over 1800 masl. The most conspicuous species are Festuca eskia, Festuca aroides and Carex curvula. Included in the 6140 Habitat Type of Community Interest by the EU Habitats Directive (92/43/EEC).
 - **Festucetea indigestae**: acidophile grasslands rich in dwarf chamaephytes, growing on soils with ephemeral snow cover, often with cryoturbation phenomena. However, their nutritional quality is rather high since legumes are usually abundant. Elevation may vary between 1000 and more than 2400 masl. Eurosiberian (Festuco ciliaris†) or Mediterranean (Festuco hystricis-Ononidetea striatae) flora. Festuca gautieri, F. hystrix and Poa ligulata are amongst the most conspicuous species. Included in the 6170 Habitat Type of Community Interest by the EU Habitats Directive (92/43/EEC).
• **Kobresio myosuroidis-Seslerietea caeruleae**: basophile dense grasslands, sometimes enriched by dwarf chamaephytes, growing on slopes with medium or long-lasting long snow cover. Pyrenees and Cantabrian mountains. *Lotus alpinus*, *Myosotis alpestris* and *Leontopodium alpinum* are amongst their characteristic species. Included in the 6170 Habitat Type of Community Interest by the EU Habitats Directive (92/43/EEC).

• **Carici rupestris-Kobresietea myosuroidis**: basophile graminoid and grass communities with dwarf cushion-shaped chamaephytes growing on summits exposed to high mountain winds exposed summits. Pyrenees and Cantabrian mountains. *Kobresia myosuroides*, *Carex rupestris* and *Dryas octopetala* are amongst their most conspicuous species. Included in the 6170 Habitat Type of Community Interest by the EU Habitats Directive (92/43/EEC).

• **Nardetea strictae**: dense grasslands thriving on long-lasting snow areas with strongly acidic organic mineral or peaty mineral soils that are damp in summer. Eurosiberian or Mediterranean flora. Northern, central and southern Spanish mountain ranges. *Nardus stricta* is the most conspicuous species. Included in the 6230 Habitat Type of Community Interest (* priority habitat) by the EU Habitats Directive (92/43/EEC).

Mesophytic (humid) perennial grasslands

Mesophytic (humid) perennial grasslands grow under temperate bioclimates and over moist soils (Figures 4.5 and 4.6). Potential vegetation is usually deciduous or mountain conifer forests. They are considered semi-natural grasslands since their presence requires grazing and/or mowing. Since there is not a summer dry period, vegetative growth is limited by winter cold. However, summer temperatures over 20°C might result in a decrease of vegetative growth (dotted line in Figure 4.5). Harvest can be carried out by grazing, mowing or both. The usual livestock type is cattle. Production is usually high or very high. The highest yield is achieved in thermo-temperate well-managed meadows.

The most important mesophytic perennial grasslands in Spain are represented by the following vegetation types (phytosociological classes) (see Rivas-Martínez, 2011):

• **Nardetalia strictae (Violion caninae and Campanulo herminii-Nardion strictae)**: dense grasslands thriving on strongly acidic (sometimes organic mineral or peaty mineral) soils: *Agrostis-Festuca* (*Violion*) and *Nardus* rough grazing types. Eurosiberian or Mediterranean flora. *Nardus stricta* is the most conspicuous species in *Nardus* grasslands. *Agrostis capillaris*, *Festuca gr. rubra*, *Danthonia decumbens* are usually abundant in *Agrostis-Festuca* rough grazing types. Included in the 6230 Habitat Type of Community Interest (* priority habitat) by the EU Habitats Directive (92/43/EEC).

• **Festuco-Brometea (Brometalia erecti)**: highly diverse, basophile and humid grasslands, not deeply transformed by grazing. Intense grazing and/or mowing would transform them in *Molinio-Arrhenatheretalia* communities. The most conspicuous species are *Bromus erectus*, *Festuca nigrescens*, *Brachypodium pinnatum* and *Trifolium montanum*. Included in the 6210 Habitat Type of Community Interest (* priority habitat) by the EU Habitats Directive (92/43/EEC), as important orchid sites.

• **Molinio-Arrhenatheretalia**: meadows and humid grasslands growing on deep and moist soils, widely transformed and spread by grazing and/or mowing all over the world, but with Eurasian optimum and origin: typical meadows (*Arrhenatheretalia*), wet
meadows (*Molinietalia caeruleae*), nitrophile, trampled meadows (*Plantaginietalia majoris*) and Mediterranean summer green rush communities and grasslands (*Holoschoenetalia*). Some types have been included in the 6410, 6420, 6510 and 6520 Habitat Types of Community Interest by the EU Habitats Directive (92/43/EEC).

Mediterranean perennial grasslands

Mediterranean perennial grasslands thrive under different types of Mediterranean climate: from thermo- to supra-Mediterranean thermotypes. Annual rainfall may be higher or lower, but there is always a rather long (usually over 3 months) summer drought period (Figure 4.7). The sward is dominated by perennial grasses whose vegetative growth period is concentrated mainly in spring and secondarily in autumn (Figure 4.7). As a consequence of the summer dry period perennial grasses dry out, but remain alive, until the arrival of autumn rains. The forage is rough and shows a high cellulose content for most of the year, so harvest is only possible by grazing (Figure 4.8). The usual livestock types are sheep, goats and beef cattle.

The most important Mediterranean perennial grasslands in Spain are represented by the following vegetation types (phytocoenological classes) (see Rivas-Martínez, 2011):

- **Stipo giganteae-Agrostietea castellanae**: acidophile Mediterranean tall perennial grasslands growing on deep cambisols, with or without gleic properties. Agrostis castellana, Stipa gigantea and Festuca merinoi are the most conspicuous species.

- **Festucetea indigestae (Jasiono sessiliflorae-Koelerietalia crassipedis)**: acidophile rough Mediterranean grasslands rich in woody chamaephytes often interspersed with scrub patches. The most conspicuous species are Festuca indigesta, *F. summilusitana*, Koeleria crassipes and Plantago radicata.

- **Festuco hystricis-Ononidetea striatae (Festuco hystricis-Poetalia ligulatae)**: short and rough basophile grasslands rich in dwarf chamaephytes, growing on soils with ephemeral snow cover, often with cryoturbation phenomena. Their nutritional quality is rather high since legumes are usually abundant. *F. hystrix* and Poa ligulata are the most conspicuous species.

- **Festuco-Brometea (Brachypodietalia phoenicoidis)**: basophile Mediterranean, but not xerophile, perennial grasslands. They usually grow on sub-Mediterranean environments or on deep clayey soils, which allow a longer growing season, drying out in late summer. The most conspicuous species is Brachypodium phoenicoides.

- **Lygeo sparti-Stipetea tenacissimae**: basophile and xerophile Mediterranean perennial grasslands: pseudo-steppes. Stipa tenacissima, Lygeum spartum, Festuca scariosa, Brachypodium retusum and Hyparrhenia hirta are amongst the dominant species. *Brachypodium retusum* communities have been included in the 6220 Habitat Type of Community Interest (*priority habitat*) by the EU Habitats Directive (92/43/EEC).

- **Poetea bulbosae**: Dense, short and nutritive Mediterranean perennial grasslands created by intense and continuous grazing, that dry out in summer. They include dwarf perennial grasses, but also annuals. Legumes (genera *Trifolium*, *Astragalus*, *Medicago*) are usually abundant. Included in the 6220 Habitat Type of Community Interest (*priority habitat*) by the EU Habitats Directive (92/43/EEC).
Annual grasslands

Annual grasslands thrive mostly under Mediterranean climate where cropping or other human or natural perturbations prevent the development of perennial communities. Rainfall may be higher or lower, but there is always a summer dry period (Figure 4.9). As a consequence of the long summer drought, grasses disperse their seeds and die in late spring or summer. Subsequently, with the start of the rainy season in September-October, seeds germinate and begin their vegetative growth, which is soon inhibited by winter cold. The sward is dominated by annual grasses whose vegetative growth period is concentrated mainly in spring (60-70% of the annual DM yield) and secondarily in autumn (10-25% of the annual yield, according to the variable starting date of the rainy season) (Figure 4.10). The forage quality is very low after flowering if the legume abundance is not high, which is the usual situation. Even though the annual DM yield may be rather high (1,500-2,500 kg/ha) the most important management problem is its strongly unbalanced distribution throughout the year. The usual livestock types are sheep, goats and native breeds of beef cattle.

The most important annual grasslands in Spain are represented by the following vegetation types (phytosociological classes) (see Rivas-Martínez, 2011):

- **Tuberarietea guttatae**: Pioneer plant communities dominated by non-nitrophilous annual short herbs and grasses, usually interspersed with shrub patches. They may thrive on acidic, basic or sandy soils. Basophile annual communities (*Trachynietalia distachyae*) have been included in the 6220 Habitat Type of Community Interest (* priority habitat) by the EU Habitats Directive (92/43/EEC).

- **Stellarietea mediae**: annual ephemeral weed, ruderal, nitrophilous and semi-nitrophilous communities.

The most important grassland types are those growing on fallow land: barbecho, posío.

4.2.2. Scrublands, woodlands and forests

Browsable biomass is an important source of forage both for livestock and wildlife in times of lack or shortage of green grass. This is the case in summer (as a result of drought) in Mediterranean Spain and winter (as a consequence of low temperatures) almost everywhere. Furthermore, in arid and semi-arid territories woody plants are much more important for livestock and wildlife feeding than grasses. Therefore, scrublands, woodlands, open forests and agroforestry systems play an essential role for extensively managed livestock and wild ungulate rearing systems in Spain. These land uses cover extensive areas (53%) of our territory and most of them are managed through grazing and/or browsing.

In most cases, the edible parts of the plant are its leaves and twigs. However, in other cases, only its flowers are edible (Figure 4.11).

Although browsable biomass is usually taken directly by browsing, branch pruning is sometimes necessary to make browsable biomass accessible to livestock, as in the dehesa system (Figure 4.12).

Some types of shrub communities (temperate heath and scrub, sclerophyllous scrub (matorral) and some other) are considered habitats types of Community interest, and are therefore protected by the EU Habitats Directive (92/43/EEC). Fire and browsing are usually necessary for their conservation.

Overabundance of wild ungulate populations has been described as an important problem for woody plant communities.
all over Spain, but especially in natural protected areas and for some highly preferred and threatened shrub and tree species (San Miguel et al., 1999, 2010; Perea et al., 2014, 2015). The lack or scarcity of green grass in summer and winter and the opportunistic (mixed-feeder) feeding behavior of most wild ungulates, combined with high stocking rates, lead to unsustainable browsing intensities on highly preferred woody species, especially when they are not abundant.

4.3. Cultivated pastures

Cultivated, or sown, pastures provide food for both extensively and intensively managed livestock as well as, sometimes, for wild ungulates (Muslera and Ratera, 1991). Cultivated pastures may be aimed at producing forage as a direct and valuable product. However, stubble and other by-products are also important for extensively managed livestock in Spain. The green cover of fallow land is also considered as an agricultural pasture even though it is the result of germination of the soil seed bank, mostly composed by spontaneous species.

Fodder crops cover a small part of the Spanish territory: 1.08 Mha, 2% of the total area and slightly over 6% of the agricultural land (MAGRAMA, 2015a) (Figure 4.13). Legumes are the most important group, with 36% of the area, with lucerne (Medicago sativa) (Figure 4.14) being by far the most important species, both for irrigated and rain-fed systems, with 260,531 ha. Cultivated grasses contributed to 33% of the area, being winter cereals (192,456 ha) and maize (Zea mays, 96,444 ha) (Figure 4.15) the most important species. Roots, tubers and other monophyte crops cover only less than 6% of the fodder crop area, while multi-species forage crops (praderas) (Figure 4.16) cover, approximately, 26%: 279,178 ha.

Only 19% of the fodder crop area is harvested for fresh consumption. The rest is conserved as hay (27%), silage (24%) (Martinez-Fernández et al., 2014) or through dehydration (30%) (MAGRAMA, 2015a).

Grain cereal croplands (approximately 6 Mha, or 35% of the agricultural land) provide stubble for grazing of extensively managed livestock and/or straw, a resource of increasing importance for livestock feeding.

FIGURE 4.14. Lucerne (*Medicago sativa*) is the most important fodder crop legume in Spain, both in irrigated and rain-fed systems. It requires calcareous soils and is usually conserved as hay or through dehydration.

FIGURE 4.15. Maize (*Zea mays*) (left) and Italian ryegrass (*Lolium multiflorum*) (right) are the most important fodder crop grasses in Spain.
ish Kingdom and resulted in a huge increase of sheep numbers. Indeed, the Mesta, a powerful association of transhumant herders, was created in 1273 and protected by Spanish Kings until 1836. It was given the privilege of herding throughout the Spanish territory with some exceptions, such as cultivated fields, meadows, vineyards and dehesas (later known as dehesas, areas devoted to the sustenance of draught and pack animals of the villagers).

Until the beginning of the second half of the 20th Century, extensive livestock rearing was, by far, the usual management model (Montserrat and Fillat, 1990). Sheep management systems were divided into two types: one associated with arable land (sometimes oriented towards milk and cheese production) and the other one consisting of transhumant herds associated to dehesas, rough grasslands and summer upland grasslands, aimed at wool and meat production. Goat herds were also distributed throughout Spain with the aim of taking advantage of scrubland, rough grasslands and rough grazing rangeland for milk and meat production (the goat was considered “the poor man’s cow”). Due to their long gestation and lactation periods, which poorly fitted the strong seasonality of Mediterranean grasslands, cows were mostly used as draught animals, with a few exceptions in northern Spain and mountain areas. Finally, some indigenous pig breeds, such as the Iberian pig, were also managed through extensive herding, mostly to take advantage of the abundant and valuable mast (forest fruits) such as acorns, chestnuts and beechnuts.

The second half of the 20th Century was a period of strong economic and social improvement in Spain. Supplementary feeding with concentrates became a widespread alternative for livestock feeding, thus allowing an increase in cattle rearing for meat and milk production and the introduction of new livestock breeds with the aim of increasing meat and milk yields. Meat and milk demand increased considerably as a consequence of social and economic progress, while the price of wool also dropped dramatically. On the other hand, shepherds became increasingly scarce and transhumance was gradually abandoned. Moreover, Spain’s integration in the European Union from 1986, and hence in the Common Agricultural Policy (CAP), resulted in deep changes in livestock management models. Nowadays, extensive livestock management is decreasing due to social and economic reasons and lack of shepherds, while intensive management aimed at meat production has increased substantially. Intensive management is also widespread for milk production even though the numbers of dairy cattle farms have decreased considerably while their individual size and production have actually increased.

The reduction of extensive livestock farming in Spain is resulting in severe conservation problems. These include shrub encroachment, increase risk of wildfire, reduction of biodiversity levels, degradation or disappearance of protected grassland habitat types, homogenization of landscapes (the so-called green desert), conservation issues for endangered flora and fauna, lack of food for insectivorous birds and carrion-eating animals, loss of cultural heritage and difficulties for achieving Sustained Rural Development. As a consequence, many LIFE-Nature Projects have been carried out with the aim of recovering these habitat types through the preservation or recovery

Fallow land covers 3.55 Mha, 20% of the Spanish agricultural land. Its green cover (barbecho) contributes substantially to extensively managed livestock rearing.

The extent of cultivated pastures in Spain seems to have remained steady or to have increased slightly since the beginning of the millennium.

5. UNGULATE REARING SYSTEMS

5.1. Brief history and current situation

From the beginning of the Neolithic period until the 1960s, livestock activity increased both in range and intensity. In contrast, wild ungulate populations decreased dramatically, since some species have been extirpated by humans through intensive hunting and land transformation, while the rest of their populations have been reduced to minimal densities consigned to marginal upland territories.

Extensive livestock rearing has been an essential activity in the Iberian Peninsula for, at least, 4-5 millennia. It has been both an engine for economic and social development and an essential tool for landscape modeling. Sheep have been the most important species due to their short gestation period and grazing behaviour that best fits the strong seasonality of Mediterranean grasslands. The arrival of the merino sheep breed in the Middle Ages, with the finest wool known all over the world, substantially contributed to the welfare of the Spanish Kingdom and resulted in a huge increase of sheep numbers. Indeed, the Mesta, a powerful association of transhumant herders, was created in 1273 and protected by Spanish Kings until 1836. It was given the privilege of herding throughout the Spanish territory with some exceptions, such as cultivated fields, meadows, vineyards and dehesas (later known as dehesas, areas devoted to the sustenance of draught and pack animals of the villagers).

Until the beginning of the second half of the 20th Century, extensive livestock rearing was, by far, the usual management model (Montserrat and Fillat, 1990). Sheep management systems were divided into two types: one associated with arable land (sometimes oriented towards milk and cheese production) and the other one consisting of transhumant herds associated to dehesas, rough grasslands and summer upland grasslands, aimed at wool and meat production. Goat herds were also distributed throughout Spain with the aim of taking advantage of scrubland, rough grasslands and rough grazing rangeland for milk and meat production (the goat was considered “the poor man’s cow”). Due to their long gestation and lactation periods, which poorly fitted the strong seasonality of Mediterranean grasslands, cows were mostly used as draught animals, with a few exceptions in northern Spain and mountain areas. Finally, some indigenous pig breeds, such as the Iberian pig, were also managed through extensive herding, mostly to take advantage of the abundant and valuable mast (forest fruits) such as acorns, chestnuts and beechnuts.

The second half of the 20th Century was a period of strong economic and social improvement in Spain. Supplementary feeding with concentrates became a widespread alternative for livestock feeding, thus allowing an increase in cattle rearing for meat and milk production and the introduction of new livestock breeds with the aim of increasing meat and milk yields. Meat and milk demand increased considerably as a consequence of social and economic progress, while the price of wool also dropped dramatically. On the other hand, shepherds became increasingly scarce and transhumance was gradually abandoned. Moreover, Spain’s integration in the European Union from 1986, and hence in the Common Agricultural Policy (CAP), resulted in deep changes in livestock management models. Nowadays, extensive livestock management is decreasing due to social and economic reasons and lack of shepherds, while intensive management aimed at meat production has increased substantially. Intensive management is also widespread for milk production even though the numbers of dairy cattle farms have decreased considerably while their individual size and production have actually increased.

The reduction of extensive livestock farming in Spain is resulting in severe conservation problems. These include shrub encroachment, increase risk of wildfire, reduction of biodiversity levels, degradation or disappearance of protected grassland habitat types, homogenization of landscapes (the so-called green desert), conservation issues for endangered flora and fauna, lack of food for insectivorous birds and carrion-eating animals, loss of cultural heritage and difficulties for achieving Sustained Rural Development. As a consequence, many LIFE-Nature Projects have been carried out with the aim of recovering these habitat types through the preservation or recovery

Fallow land covers 3.55 Mha, 20% of the Spanish agricultural land. Its green cover (barbecho) contributes substantially to extensively managed livestock rearing.

The extent of cultivated pastures in Spain seems to have remained steady or to have increased slightly since the beginning of the millennium.

5. UNGULATE REARING SYSTEMS

5.1. Brief history and current situation

From the beginning of the Neolithic period until the 1960s, livestock activity increased both in range and intensity. In contrast, wild ungulate populations decreased dramatically, since some species have been extirpated by humans through intensive hunting and land transformation, while the rest of their populations have been reduced to minimal densities consigned to marginal upland territories.

Extensive livestock rearing has been an essential activity in the Iberian Peninsula for, at least, 4-5 millennia. It has been both an engine for economic and social development and an essential tool for landscape modeling. Sheep have been the most important species due to their short gestation period and grazing behaviour that best fits the strong seasonality of Mediterranean grasslands. The arrival of the merino sheep breed in the Middle Ages, with the finest wool known all over the world, substantially contributed to the welfare of the Spanish Kingdom and resulted in a huge increase of sheep numbers. Indeed, the Mesta, a powerful association of transhumant herders, was created in 1273 and protected by Spanish Kings until 1836. It was given the privilege of herding throughout the Spanish territory with some exceptions, such as cultivated fields, meadows, vineyards and dehesas (later known as dehesas, areas devoted to the sustenance of draught and pack animals of the villagers).
of traditional extensive livestock management. Table 5.1 and Figure 5.1 summarize the evolution of livestock numbers in Spain since 1750.

Unlike extensive livestock farming, wild ungulate populations have vastly increased over the last five decades as a result of three major causes: an outstanding growth of big game demand (wild ungulates have become a major economic resource), rural abandonment and a parallel increase of protected areas (Figure 5.2).

5.2. Livestock

5.2.1 Sheep

As a consequence of the dominant Mediterranean climate and the resulting strong seasonality of green grass availability in Spain, small livestock (with short periods of high nutrient requirements in the lactation and late gestation phases) has prevailed over cattle and horse for centuries. According to their foraging preferences, sheep have been used for grazing, either through transhumance or by being associated to agricultural landscapes, products and byproducts, while goats have been aimed at scrubland browsing.

Sheep have been reared as a multipurpose species. For centuries, and especially after the selection of the Merino breed, the most important product was wool. Indeed, wool from Merino sheep was a major pillar of the powerful Spanish empire of the 15th-17th centuries (Phillips and Phillips, 1997). Lamb has been another major product, especially for transhumant or transsectoral (shorter seasonal movements) grazing systems, while milk, usually for cheese making, was important mostly for breeds associated with cultivated landscapes and products. However, since the 1990s wool prices suffered a dramatic drop, which resulted in revenues that did not cover shearing costs (current prices are beginning to reverse the trend). The lack of shepherds resulted in substantial changes in sheep herding: partial substitution of shepherds by fences, shifting to semi-intensification and a dramatic decrease of sheep grazing on large areas of rough grassland, rough grazing rangelands and upland summer pastures, especially over 2,000 m above

![Graphs showing the evolution of livestock numbers in Spain since 1750.](image)

FIGURE 5.1. Evolution of livestock numbers (in thousands) in Spain since 1750. Source: MAGERAMA (2015a).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td>24350</td>
<td>22469</td>
<td>13026</td>
<td>20067</td>
<td>16344</td>
<td>15200</td>
<td>16954</td>
<td>24400</td>
<td>18552</td>
</tr>
<tr>
<td>Cattle</td>
<td>3535</td>
<td>2967</td>
<td>2075</td>
<td>3794</td>
<td>3112</td>
<td>4300</td>
<td>4300</td>
<td>6216</td>
<td>6075</td>
</tr>
<tr>
<td>Goats</td>
<td>6543</td>
<td>4552</td>
<td>2386</td>
<td>4750</td>
<td>4135</td>
<td>2293</td>
<td>2584</td>
<td>2876</td>
<td>2904</td>
</tr>
<tr>
<td>Pigs</td>
<td>3390</td>
<td>4552</td>
<td>1744</td>
<td>5267</td>
<td>2688</td>
<td>8700</td>
<td>11960</td>
<td>22149</td>
<td>25704</td>
</tr>
<tr>
<td>Equine</td>
<td>1738</td>
<td>2997</td>
<td>1928</td>
<td>3061</td>
<td>2463</td>
<td>831</td>
<td>540</td>
<td>321</td>
<td>318</td>
</tr>
</tbody>
</table>
sea level. On the other hand, as a consequence of the dwindling of lamb demand and prices, some sheep farming systems are now shifting more towards milk and cheese production, which seems to have a more promising future, especially when they are supported by quality labels and/or denominations of origin or geographic indications.

The current number of sheep is almost 20 million head, with a slightly decreasing trend in the past decade (Table 5.1; Figure 5.1). The number of dairy ewes is fairly stable or increasing while the number of flocks for meat is declining. The distribution of sheep numbers throughout Spain is shown in Figure 5.3. A major part of sheep farms depends on dehesa systems, rough grasslands (marginal areas) and crop byproducts and products, mostly in areas where cattle farming is not possible or not profitable. Figure 5.4 summarizes sheep farming types, according to the main final product, in Spain.

Most sheep flocks aimed at lamb production use extensive management systems. They usually belong to one of two types of lambing strategies (Figure 5.5). The first one (one lambing per year) is aimed at reducing supplementary feeding to a minimum. Autumn lambing is usually preferred, since lamb prices are much higher in winter (Christmas) than in spring, the natural lambing season. The second one (three lambing periods within two years) is aimed at maximizing lamb yield even at the expense of increasing supplementary feeding (one lambing period occurs in summer, the worst season regarding available forage quality and thus requiring more supplementary feeding).

While beef and pork consumption has increased for the last decades and now remains more or less stable, sheep meat has suffered a sharp drop, of about 50%, since 2000. Per capita consumption of sheep and goat meat is usually between 2 and 3 kg per year, around 4% of the total meat consumption (MAGRAMA, 2015a). Lambs may be sold approximately 45 days after lambing, weighing less than 8 kg (suckling lambs), or at around 4 months of age, weighing 11-16 kg (light lamb, the most consumed type in Spain). Some of them are also intended for fattening up to 6-12 months of age, when they weigh over 16 kg.

The most important native sheep breeds for meat production are Merino, Castellana, Churra, Segureña, Rasa, Ojalada, and Mallorquina (Figure 5.6).

Sheep milk amounts to 8% of the Spanish milk annual yield (MAGRAMA, 2015a). Most dairy sheep farms are aimed at cheese production, usually under quality labels and/or Protected Denominations of Origin (PDO) or geographic indications. Some
of them are associated with arable landscapes and products, like the Manchego cheese, while others depend upon grazing on meadows, forage crops or even rough grasslands, like the Idiazabal or Ronkal cheeses from northern Spain. Others might be classified as intermediate types, like the Torta del Casar cheese from Extremadura.

Although there are significant variations between breeds and management systems, dairy ewes usually produce between 150 and 200 kg of milk in 150-180-days lactation periods. The most important sheep breeds for milk production are Manchega, Latxa, Carranzana, Castellana (native breeds, Figure 5.7), Assaf and Lacaune (foreign breeds).

5.2.2. Cattle

Due to their long gestation and lactation periods, which poorly fit the strong seasonality of Mediterranean grasslands, cattle in the past were mostly used as draught animals, with few exceptions in northern Spain and mountain areas, where meadows are available. In those areas cows were also aimed at milk and beef production. However, since the beginning of the second half of the 20th Century, the use of supplementary feeding and the introduction of foreign breeds selected for beef production changed dramatically the management of cattle in Spain.

Dairy cow breeds behave as grazers. However, most Spanish beef cattle breeds behave as mixed feeders: they graze whenever green nutritive grass is available, but might browse, even intensively, when green grass is scarce or show a low nutritional value. They may even bring down small trees (up to some 20 cm in diameter at breast height) with the aim of browsing their leaves and twigs.

The number of cows has increased greatly since the 1950s, and now remains around 6 million head showing a rather stable trend (Table 5.1; Figure 5.1). The number of dairy cows has decreased since Spain joined the European Union. Over a period of a few decades, the number of farms dropped dramatically while those that remain are much bigger in head numbers and milk production. The average milk production per cow has also increased by many folds, through genetic selection and improvement of infrastructures and feeding management. On the other hand, the number of beef cattle has increased substantially over the same period (Figure 5.8), presumably because they are supported by CAP subsidies and because, unlike sheep and goat farms, shepherds are not needed in beef cattle farms.

The distribution of cow numbers throughout Spain is shown in Figure 5.9. A major part of beef cattle farms depends on meadows (northern Spain and mountain areas), but also on the dehesa system (sparsely wooded pastures of western and southwestern Spain), rough grasslands (marginal areas) and upland summer pastures.

There are many Spanish native breeds of beef cattle, each one adapted to the particular ecological conditions of their home range through centuries of careful selection. However, since they were not aimed at beef production until the 1960s, today they are usually crossed with Charolais and Limousin (French) breeds in order to increase the live weight and growth of beef suckler calves and thus maximize meat production. Most
farms are located in rural areas and specialize in rearing suckler calves which are sold at 5-6 months of age and later fattened to an optimum slaughter weight with concentrate feeds in specialist fattening farms. Fattening farms are usually located in well communicated agricultural areas, often far from beef cattle farms. Beef cows are usually fed through extensive management low-cost systems on natural and semi-natural grasslands. In northern Spain they usually require a limited winter housing and feeding on hay or silage. However, their dependence on supplementary feeding has increased over the last decades, especially in Mediterranean Spain, where winter housing is not needed. Most beef cattle farmers depend for their income on a combination of livestock sales and support payments, CAP subsidies from the European Union.
Some of the principal breeds of beef cattle in Spain are Rubia gallega, Asturiana de los valles, Tudanca, Pirenaica and Parda de montaña in northern Spain; Morucha and Avileña negra ibérica in central Spain and Retinta, Lidia and Berrenda in southern Spain (Figure 5.10). However, some traditional breeds are currently managed for new desired traits, often linked to market demands. Cattle feeding is mainly based upon grazing during the season of vegetation growth: (April) May - October (November) in northern Spain and October - May in Mediterranean Spain.

Cow milk amounts to 86% of the Spanish annual milk yield. Dairy cows are now mainly located in northern Spain (one third in Galicia, NW Spain), where the largest dairy industries are located (MAGRAMA, 2014). Their individual size is rather variable: from 14 cows/farm in Extremadura, W Spain, to 202 in Valencia, E Spain, with a mean of 37 cows/farm, everywhere showing a clear increasing trend for the past decades (MAGRAMA, 2015a). Dairy cattle facilities often show high levels of technology to ensure welfare for animals as well as efficiency and a suitable environment to improve health and prevent diseases. The usual breed is Holstein-Friesian. The number of dairy cows was around 855,000 in 2014, showing a negative trend (MAGRAMA, 2015a). Feeding is mainly based on annual forage crops (often silage in northern Spain) and concentrates. Genetic improvement of cattle for milk production has been practised for many years. The average milk yield per cow has shown a steady growth for the last decades and now is 8,000 kg for a lactation period of approximately 280 days (MAGRAMA, 2015a).

5.2.3. Goats

Goats have been reared almost everywhere in Spain, as a multi-purpose species, since the beginning of the Neolithic period. They are among the most efficient domestic animals in their use of water. In addition, their short period of high nutritional requirements (late gestation and usually a 45-day lactation) fits perfectly the seasonal offer of green forage of Mediterranean ecosystems. They are also opportunistic feeders, with a large spectrum of food sources, usually including browse as a major component of their diet. Finally, as their milk yield per unit of live weight is higher than that of cows and sheep, they were considered the poor man’s cow. As a consequence, herded goats have been widespread all over Spain for millennia.

The number of goats was over 6 M head in the 18th century. Its lowest level was reached in the 1980s, with some 2 M head, probably due to the lack of shepherds and the strong competition of other livestock species: cattle and sheep. Over the past decades it has increased slightly to reach, today, 2.7 M head (MAGRAMA, 2015a).

The distribution of goat numbers throughout Spain is shown in Figure 5.11. Most goat farms are located in Mediterranean scrublands, rough grazing rangelands and rough grasslands (marginal areas). Figure 5.12 summarizes goat farming types, according to the main final product, in Spain.
Per capita consumption of goat meat has dropped for the last decades and nowadays is slightly under 2 kg/year. Suckling kids represent 82% of the goat meat consumption in Spain (MAGRAMA, 2015a). On the other hand, goat cheese is rather highly appreciated and priced, mostly under Protected Designations of Origin (PDO). Therefore, goat farms primarily aimed at meat production have almost disappeared and today most goats are reared for milk production, with kids becoming something similar to a by-product. Goat milk currently accounts for 6% of the Spanish milk annual production (MAGRAMA, 2015a).

Some dairy goat farms are associated with agricultural landscapes and purchased feed (intensive management), but most depend, to a greater or lesser degree, upon scrubland and rough grassland browsing and grazing (semi-intensive management). Semi-intensive management results in milk yields of 150-300 kg/goat for lactation periods of about 200 days, while intensive management usually results in milk yields of 400-800 kg/goat for the same period (Daza et al., 2004; MAGRAMA, 2015a).

The most important goat breeds for milk production are Murciano-Granadina, Malagueña, Payoya, Majorera, Tinerfeña and Palmera. The most important goat breeds for mixed meat/milk production are Pirenaica, Verata, Blanca andaluza, Blanca celitiberica and Guadarrama (Figure 5.13).

5.2.4. Iberian pig

Although most Spanish natural pastures are devoted to ruminant rearing systems, some pig breeds have also been used to take advantage of forest fruits, such as oaks (*Quercus* spp.) and beech (*Fagus sylvatica*) masts, and grass, through extensive herding. The most important one is the Iberian pig, a traditional breed resulting from wild boar (*Sus scrofa*) domestication and selection in southwestern Europe. It is closely linked to the *dehesa* (Spain) - *montado* (Portugal) system: a traditional agro-silvo-pastoral extensive and efficient management system that links production and biodiversity conservation (Montero et al., 1998; Olea and San Miguel, 2006). Their link is so close that the outbreak of the African swine disease in the first half of the 20th century resulted in the uprooting of vast areas of Spanish *dehesas*.

Its colour may be black or dark red, with little or no hair and black hooves; that is why it is called *pata negra* (Figure 5.14). Iberian pigs show a striking capacity to accumulate intramuscular and
epidermal fat. This retards meat oxidization processes and makes their taste so special. The Iberian pig is a good example of a high quality, highly prized meat product which can also contribute to the conservation of traditional and endangered cultural landscapes such as the Spanish dehesa and the Portuguese montado, especially under quality designations of Protected Denominations of Origin (PDO). Indeed, some Iberian pig dehesas have been certified under the FSC Forest Certification System.

Some traditional Iberian pig breeds were on the verge of extinction in the 1960s as a result of cross breeding with Duroc breeds. Indeed, some of them disappeared. However, the Spanish Institute for Agrarian Research (INIA) succeeded in...
the conservation of some pure-bred lineages. Today, the Spanish regulation requires different labelling for products from pure-bred (100%) Iberian pig and cross-bred Iberian pig (50-75%).

Iberian pigs may be fattened in enclosures through concentrate feeding (intensive management). Indeed, most Iberian pigs are fattened with concentrates until they reach the age of one year. However, some of them are managed through extensive herding in dehesas for the last 3-4 months of their life: October-January, when acorns are easily available on the ground under the trees. This last phase is called montanera. Over the montanera period Iberian pig herds move freely throughout the dehesa system and feed on acorns (rich in carbohydrates and fats) and green grass (rich in protein and saturated acids: oleic, linoleic and some others). During that period they may gain 60-70 kg of live weight while producing a highly valuable and appreciated meat. To do so, animals should reach the age of one year and a live weight of 70-100 kg. Not less, but also not more, because they would not be able to gain more weight in such a short period of time (Figures 5.15 and 5.16). These animals are called shearlings. They are also castrated and nose-ringed, with the aim of avoiding damages to grassland by rooting. Acorn consumption per animal is related to its weight, with an average of 6-10 kg of acorns per animal and day, with an additional intake of, at least, 3 kg of grass. It is usually necessary to consume 10-15 kg of acorns for each 1 kg gain in live weight, and the daily weight gain is typically 0.5-1 kg/day (Benito et al., 2006). The usual acorn consumption over the montanera phase is 500-800 kg. Therefore, stocking rates usually vary between 0.5 and 1 shearlings/ha. The final product of this extensive highest quality system is labelled as bellota (acorn) Iberian pig. However, the amount of acorns available is, in many cases, insufficient to obtain commercial weights in the herd of pigs. In these cases an alternative method, known as "recebo", is used. This consists of giving the pig a supply of an additional specific feed (Benito et al., 2006). In 2012, the number of Iberian pigs in Spain was 4.17 Million (M): 0.52 M were pure Iberian breed and 3.65 M cross-breed (with Duroc). Around 0.96 M head were fed on the dehesa system: bellota and recebo (MAGRAMA, 2015a).

Best quality acorns are provided by holm oak (Quercus rotundifolia, or Quercus ilex subsp. ballota). However, other Mediterranean Quercus species, which may form mixed woodland with holm oak, also provide acorns (Gea et al., 2006). The earliest acorn yield comes from Quercus faginea while the widest seasonal distribution of acorn yield is provided by cork oak (Quercus suber). Quercus pyrenaica, a sub-Mediterranean oak, may also contribute to the acorn yield in somewhat cold dehesas.
The distribution of Iberian pig numbers is concentrated in southwestern Spain: 60% in Extremadura, 30% in Andalusia and 10% in other Autonomous Communities (MAGRAMA, 2015a).

The increase of concentrate prices has resulted in a more expensive fattening transition from piglet to shearling, and that situation, together with the recent economic crisis, has led the Iberian pig sector to a steady decline over recent years.

5.2.5. Equids

Equids include horses, donkeys and mules. *Equus hydruntinus*, also known as zebro, was an Iberian wild horse that might have become extinct as late as the 16th Century. Equids are not ruminants. They are monogastric animals: have a single stomach and small intestine layout, and a ruminant-like fibre fermenting, large volume hindgut for microbial digestion. That is why they may feed on low-nutrient fibre-rich roughages and show different feeding preferences than ruminants: they behave as grazers and might be considered as grassland improvers since they may feed on rough grass rejected by other livestock species. They are also extremely resistant to severe climatic conditions and are probably the only livestock species able to survive by itself throughout the year in upland pastures of Spain (Figure 5.17). That is also why they are the livestock type with the highest percentage of wolf attacks in northwestern Spain.

In Spain, equids have been used for millennia as draught animals. However, horse meat is not generally eaten in Spain. Their use for meat production is only marginal: 11,096 t (carcass weight) and 46,400 slaughtered animals with a decreasing trend (MAGRAMA, 2015b). This is why their numbers have dropped so dramatically (some 90%) over the last century (Table 5.1., Figure 5.1). However, Spain exports meat horses (both live animals and slaughtered meat) for other European markets, mostly from its northern provinces.

5.3. Wild ungulates

Many studies have documented the extinction of several Mediterranean wild ungulate species and the intense population decrease of the remnants due to human causes along the Holocene, and especially during certain periods (Blondel and Aronson, 1999; Tsahar et al., 2009). However, that trend changed dramatically in Spain during the last decades of the 20th century. Since then, the numbers of most wild ungulate species increased significantly as a result of both increase in density and range expansion (Gordon et al., 2004; Milner et al., 2006; San Miguel et al., 2010; Herruzo and Martínez-Jarque, 2013; Perea et al., 2014). The most important causes for this shift are related to social and economic changes. One of them was the abandonment of traditional landscape management models and the sudden decrease of human density in rural areas. That situation promoted natural succession, shrub encroachment, expansion of forest land and, hence, a higher availability of shelter and food for wild ungulates. The result was both the recovery of native populations and the
spontaneous re-colonization of long lost ranges. Another major cause was an exponential increase in the demand for wild ungulate hunting and watching throughout most European countries (Milner et al., 2006). Thus, wild ungulates suddenly became a major economic resource for many European regions, and in particular for Spain (Gordon et al., 2004; Herruzo and Martinez-Jauregui, 2013). As a result, many landowners contributed to the increase of their numbers both through re-introduction and through habitat and population management (sometimes quite sophisticated and intensive), with the main goal of increasing both animal density and trophy quality.

We lack sufficient knowledge about regional censuses for every wild ungulate species in the Mediterranean region. However, wild boar (*Sus scrofa*) (Figure 5.18) is probably the species showing the highest increase both in numbers and in range; and both at a European and at a Mediterranean scale. Its common Spanish name is *jabalí* (derived from the Arabic language جناحين (gabali), which means mountain pig. It is an omnivore and is well adapted to an extremely wide range of ecological conditions. In addition, wild boars may breed twice a year, producing litters of 4-6 piglets, so their populations may grow very quickly. In Spain the annual harvest of wild boar has increased tenfold during the last 35 years (Figure 5.2), and the species is now found in nearly all environments: from the high Pyrenees, on alpine pastures over 2,400 m asl, to Europe’s most arid environments located in SE Spain, where the species thrives in esparto (*Stipa tenacissima*) grasslands. As a consequence, wild boar overpopulation is a growing problem, causing many different conflicts: severe damages to agricultural crops, natural grasslands (Bueno et al., 2009), biodiversity, parasites and diseases, traffic collisions and many other aspects. Indeed, severe concerns have been raised about wild boar sanitary status within the One Health Initiative (http://www.onehealthinitiative.com/) since it is considered a major reservoir and agent of transmission of infectious diseases (tuberculosis, brucellosis, Aujeszky, foot and mouth disease, anthrax and some others) that also affect livestock (epizootic diseases) and, even, humans (zoonoses). Prevalence of tuberculosis in wild boar populations in south-central Spain has increased over the last decade and is currently affecting over 63% of individuals (Gortázar et al., 2006; Vicente et al., 2013; Barasona et al., 2014).

Red deer (Cervus elaphus) is also a very important big game species in Spain (Figure 5.19). Its common Spanish name is *ciervo*. Its populations reached a minimum in the early 20th century, when it was only present in south-central Spain with very low densities: under 1 ind/km². However, the species has recovered long lost ranges over the last decades and red deer numbers have also increased dramatically (Figure 5.2). Its annual harvest has increased by eightfold during the last 35 years (Herruzo and Martinez-Jauregui, 2013). In much of Mediterranean Spain deer populations have become overabundant and ecologically unsustainable due to their impact on flora and vegetation (San Miguel et al., 1999; Perea et al., 2014) and its condition of wild host of parasites,
causing major epizootic and zoonotic diseases (Gortázar et al., 2006). Red deer behave as opportunistic feeders: they graze when green nutritive grass is available but may browse heavily during hunger periods: summer and winter. Due to the lack of natural predators, deer populations usually grow some 20% each year. Usual densities are around 30-50 ind/km² (sometimes even more) in south-central Spain, where big game estates are frequently fenced, and 4-10 in northern Spain, where they are not fenced (Acevedo et al., 2008). Red deer population management is becoming more and more artificial (e.g.: supplementary feeding and watering, genetic selection and improvement, habitat management and sanitary practices) each year with the aim of achieving ever better trophies, especially in Mediterranean Spain. Indeed, there is concern about the loss of genetic purity of the Spanish red deer: *Cervus elaphus* subsp. *hispanicus*, so analyses of mitochondrial DNA are being carried out with the aim of certifying hunting trophies.

Roe deer (*Capreolus capreolus*) is a small forest ungulate native to Spain (Figure 5.20). The species is known as corzo in Spanish. Its range and population densities have also increased over the last decades as a consequence of the abandonment of rural areas and the reduction in hunting pressure. Maximum densities, over 20 ind/km², have been recorded in the Cantabrian Mountains (Fandos and Burón 2013). However, they have dropped dramatically over the last five years, probably due to a mortality increase related to a fly parasite (*Cephenemyia stimulator*). Roe deer females may give birth to 1-3 offspring each year. However, as a result of its territorial behaviour, small size, competition with red deer and presence of natural predators, there seems to be no problem of overabundance. Roe deer mostly behave as generalistic browsers, although they may consume substantial...
quantities of grasses in open landscapes (Abbas et al. 2013). In fact, roe deer have recently colonized agricultural lands, particularly in the Spanish plateaus, where densities are increasing significantly (Fandos and Burón 2013).

Fallow deer (*Dama dama*) are also wild ruminants belonging to the family Cervidae (Figure 5.21). Its common Spanish name is gamo. They were present in the Iberian Peninsula until the last Ice Age. However, the species disappeared and was re-introduced in ancient and recent times. Today, its populations are widespread all over Spain, from the Pyrenees to southwestern Spain (i.e. Doñana National Park). However, their densities are seldom very high. Fallow deer mostly behave as grazers, even though it may compete with red deer for limited feeding resources, such as acorns.

The **Iberian ibex** (*Capra pyrenaica*) is the most important big game species belonging to the Family Bovidae in Spain (Figure 5.22). Its common Spanish name is cabra montés. It is indeed the most highly valued big game trophy in Spain. The species is endemic of the Iberian Peninsula, with four subspecies. Two of them (*C. p. lusitanica* and *C. p. pyrenaica*) became extinct in recent times, the latter very recently, in the year 2000. The other two subspecies (*C. p. victoriae* and *C. p. hispanica*) were also on the verge of extinction but currently have healthy populations in mountain ecosystems all over the Iberian Peninsula: *C. p. victoriae* usually thrives on acidic lithologic substrates and *C. p. hispanica* on basic soils. Indeed, *C. p. victoriae* was also introduced in the French Pyrenees in 2014. The Iberian Ibex is an opportunistic feeder that may browse heavily during hunger periods. That is why high densities (over 20 ind/km²) may result in serious impacts on threatened flora and woody vegetation (Perea et al., 2015). Adult females usually give birth to one kid in late May or June, so annual population growth is usually around 20%.

Chamois (*Rupicapra pyrenaica*) is another small wild bovid species native to high mountains of northern Spain (Figure 5.23). There are two subspecies: *R. p. parva* in the Cantabrian Mountains and *R. p. pyrenaica* in the Pyrenees. Their common Spanish names are rebeco in the Cantabrian Mountains and sarrio in the Pyrenees. Both subspecies behave as grazers and contribute to the conservation of natural upland grasslands (Aldezálbal et al., 2002). Females give birth to 1(2) kids in late May or June. However, annual population growth is uncertain, and usually low, as a consequence of high natural mortality due to accidents and predation on youngsters. Population densities usually vary between (2) 5 - 10 (20) ind/km².

The **mouflon** (*Ovis orientalis musimon*) is a wild sheep native to Asia (Figure 5.24). It was introduced in Corsica, Sardinia and Cyprus in ancient times where it became a feral species. It was then introduced in Spain in the 20th century as a big game species. Its typical habitat is low mountains and open woodlands. The horns of mature rams are curved, sometimes in almost one full revolution. Adult females produce one to two offspring and may lamb twice a year, even though it is not frequent. Their annual population growth may be over 30%. However, natural mortality and predation on youngsters compensate for a significant part of that growth. The species mostly behaves as a grazer and population densities are rarely over 20 ind/km².
The aoudad or Barbary sheep (*Ammotragus lervia*) (Figure 5.25) is a wild caprine native to arid and semi-arid environments of northern Africa, where the species has been listed as Vulnerable in the IUCN Red List of Endangered Species. Adult males may weigh up to 160 kg. The aoudad was introduced in Murcia (southeastern Spain) in 1970 and later in La Palma, Canary Islands, with the aim of increasing the diversity of big game species. Today, it is considered an alien invasive species in Spain. It behaves mostly as a grazer, even though it may browse in times of green grass shortage (Fernández-Olalla et al. 2016). Ewes may produce one, two or even three offspring each year, so their annual population growth may be around 30%. Their current population density in Sierra Espuña, Murcia, is around 7 ind/km² (San Miguel, 2015).
6. CONCLUSIONS

As a consequence of its high ecological diversity and long history of human activity, pastures cover a high percentage of Spain’s land.

Natural meadows, different types of rough grasslands and rough grazing rangelands cover about 18% of the Spanish territory: 9 Mha. However, since Spain is a Mediterranean country where green grass is scarce in summer and winter, browse is also an important source of forage for both livestock and wildlife. Therefore, scrubland, woodland and forestland (20 Mha), are also widely used by livestock and wild ungulate rearing systems. Cultivated pastures (fodder crops, stubble, by-products and fallow land) provide food for both extensively and intensively managed livestock as well as, sometimes, for wild ungulates. Lucerne and other legumes are the most important fodder crop type followed by winter cereals and maize.

Extensive livestock rearing has been an essential activity in the Iberian Peninsula for, at least, 4-5 millennia. It has been both an engine for economic and social development and an essential tool for landscape modeling. Sheep have been the most important livestock species. Goat herds were also used particularly to take advantage of scrubland, rough grasslands and rough grazing rangeland for milk and meat production. Cows were mostly used as draught animals and some indigenous pig breeds, such as the Iberian pig, were also managed through extensive herding, mostly to take advantage of forest fruits.

Since the second half of the 20th century, supplementary feeding with concentrates became a widespread alternative for livestock feeding. This allowed an increase in cattle rearing for meat and milk production and favored the introduction of highly productive livestock breeds, increasing meat and milk yields. Moreover, Spain’s integration in the Common Agricultural Policy (CAP) resulted in deep changes in livestock management regimes. Nowadays, extensive livestock management is decreasing due to social and economic reasons and lack of shepherds, while intensive management aimed at meat production has increased substantially. Intensive management for milk production is now facing a difficult time because of market globalization.

The reduction of extensive livestock farming in Spain is causing severe conservation problems. These include shrub encroachment, risk of wildfire, reduction of biodiversity levels, degradation or disappearance of protected grassland habitat types, and homogenization of landscapes.

Unlike extensive livestock farming, wild ungulate populations have vastly increased over the last five decades as a result of three major causes: an outstanding growth of big game demand (wild ungulates have become a major economic resource), rural abandonment and a parallel increase of protected areas. Although they contribute to Sustainable Rural Development, wild ungulate populations are also raising conflicts related to overabundance and animal and human health (epizootics and zoonoses) since ungulates may act as disease vectors and reservoirs.

7. REFERENCES

