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Abstract

This article describes an academic exercise recently carried out in the Escuela
Técnica Superior de Arquitectura de Madrid, within the course La Estructura en el
Proyecto Arquitectónico (Structure in Architectural Project).

The goal was to work on the layout optimization of pin-jointed frames. The stu-
dents had to design the layout of a structure with a set system of forces in equilibrium
and within geometrical bounds. The students were helped by a script implemented in
MATALB® in order to compute the volume of material (the primary objective func-
tion) and other derived parameters. This allowed students to focus their attention
in the topic of learning, while at the same time the results of the exercise were more
reliable.

Different solutions were analyzed as the basis of further discussion in the classroom.
Theoretical concepts then arise naturally and are linked with their previous work,
which make it easier to address abstract concepts and reinforce the learning process.

The exercise shows that the key parameter is slenderness (defined as the ratio
between the span and the maximum depth of the framework). The scheme is less
sensitive. Once the chords of the structure are designed with an adequate slenderness,
it only remains to place the web elements with angles of around 45 degrees. For
slenderness higher than approx. 8 to 10, the best design is a truss with parallel
chords and diagonals between 30 and 60 degrees (better from 45 to 60 degrees). For
slenderness lower than approx. 8 the arch is more efficient than a truss. This means
that for typical frameworks, the skills of the designer are almost restricted to the
election of the slenderness.

Built examples are finally reviewed in order to see how managing the different
variables of an actual structure is a subtle question, one that cannot be detected
in the previous theoretical exercise. Simplicity is crucial. Techniques such as pre-
stressing notably increase efficiency.

The article also presents architectural masterpieces built in short and medium
spans, sometimes made with low efficiency structural schemes. Any real problem is
complex, and good solutions must manage all of the variables. Although structural
efficiency does not guarantee architectural success, both of these are compatible.
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1 Introduction

There are different approaches to teaching. But finally students learn only when
they are committed to the process of learning, and exercises are crucial to get them
involved in that process.

This article describes an academic exercise designed to teach the layout optimiza-
tion of pin-jointed workframes. It was developed at the Escuela Técnica Superior de
Arquitectura de Madrid (ETSAM) in the course La Estructura en el Proyecto Arqui-
tectónico (Structure in Architectural Project).

This course addresses the coneptual design of structures. Theoretical concepts
are combined with visual analysis of built structures. Experience has proven that
the former is always difficult for students. The aim of this exercise was to facilitate
the understanding of frame layout optimization. The use of a script implemented in
MATALB® was crucial for undertaking the task with a reasonable amount of work
and in a reliable manner.

The exercise encouraged fruitful discussion in classroom and to reinforce the knowl-
edge of basic theoretical concepts. Only primary questions were dealt with, but in
such a way that they would be part of the students’ structural insight in the future.

Section 2 describes the exercise; Section 3 summarizes the theoretical basis used by
the students in this topic; Section 4 shows the results; Section 5 discusses the results;
Section 6 reviews built structures (an important question due to the simple assump-
tions used in the previous Sections) and Section 7 compiles conclusions. Appendix A
lists the script of MATLAB® with additional comments.

2 The exercice

The exercise is summarized in the figure 1 . Data are: the set of forces in equi-
librium, distributed along the line ab (kinematical conditions are therefore implicitly
assumed); within a geometrical bound defined by the rectangle abcd.

a b

dc

span

depth

Figure 1: Description of the exercise: define a pin-jointed frame in equilibrium under a given
system of forces in equilibrium along the line ab and constrained in its geometry by the
rectangle abcd

The student must propose either a truss or a funicular layout, subject to the above
conditions.

The set of forces corresponds to a typical problem in building structures; the
problem of a simple supported structure with a continuous load. The division of
a continuous load using five point loads is an interesting question to discuss in the
classroom.

Proposals are limited to statically determinate trusses and funiculars layouts due
to two main reasons. Firstly, most medium span structures and all long span ones
are designed using workframes; they are easy to produce and to build, and they
are usually more efficient than continuous structures (where over-sizing is in practice
always present). Secondly, these structures are either statically determinate (for the
trusses) or over-statically determinate (for funicular schemes), and therefore only
equilibrium is needed to obtain the internal forces. I.e., neither compatibility nor
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constitutive equations are required. This is quite convenient for saving time and, most
importantly, to focusing students’ attention on the layout of the structure instead of
its size. It must be remembered that the course centres on the conceptual design of
structures.

Internal forces were obtained using a script implemented in MATLAB® which is
included in Appendix A, which is valid for 3D systems. The theoretical basis can
be seen in a similar script, using MAPLE®, as described by Fernandez Cabo (2012).
Once those variables were computed, all the other ones are easily derived (additional
details are given in the next section).

3 Theoretical basis: the state of the art

Layout optimization is a mature and wide field. The approach used in this course
follows the path laid down by Maxwell (1890) and Michell (1904) and widened by
Prof. Ricardo Aroca Hernández-Ros for the case of workframes (Aroca, 1989/1990,
1992/1993, 2002/2011). This section summarizes key concepts of Aroca’s work used
in exercise.

The volume V of a pin-jointed frames structure, with only point loads at the
nodes, can be computed by summing up the volume of the m members that form the
structure:

V =
m∑

1

AjLj =
1
σ

m∑

1

| Nj | Lj

︸ ︷︷ ︸

W

(1)

where A is the cross-section area, L is the length, σ is the allowable stress (a
assumed constant for optimum sizing) and N is the internal force.

The quantity of material W is defined as:

W =
m∑

1

| Nj | Lj (2)

The volume V of the structure is therefore proportional to W . When the struc-
ture is not statically indeterminate, W can be computed regardless of the sizing; i.e.
regarding the material, which makes it possible to focus on the layout. For statically
indeterminate ones, it is possible to assume a priori a stress distribution and therefore
also to avoid preliminary sizing.

W can be calculated as the sum of the contribution of the members in tension
W + and compression W −:

W + =
∑

| N+

j | Lj (3)

W − =
∑

| N−

j | Lj (4)

And therefore

W = W + + W − (5)

Maxwell (1890) stated an important theorem: given a set for forces in equilibrium,
for all layouts associated with that system the difference between the quantity of
material in tension and compression is an invariant, and that constant is usually
termed Maxwell’s constant, kM :

kM = W + − W − (6)

On the other hand, as W computes a work, each individual component can be
computed as a scalar product; which makes it possible to compute W as a sum of
their horizontal and vertical components, Wx and Wy :
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| Nj | Lj
︸ ︷︷ ︸

Wi

= | Njx | Ljx
︸ ︷︷ ︸

Wix

+ | Njy | Ljy
︸ ︷︷ ︸

Wiy

(7)

where sub-indexes x and y refer to horizontal and vertical components respectively.
As W is proportional to the volume of the structure,its value measures the ef-

ficiency of a specific layout; and this why it is a key parameter in all the theory of
layout optimization. In general terms, for a horizontal span and a set of vertical forces
(at is the case here) W is proportional to the total load P and the span L:

W = µP L (8)

where µ is constant, and its value therefore measures the efficiency of each layout,
the smaller its value the greater the efficiency. This is a typical equation in the
literature of layout optimization.

For a specific weight ρ, dead load PDL is:

PDL = ρV =
ρ

σ
W =

1
σ/ρ

µP L (9)

The parameter σ/ρ has a physical meaning: the maximum height that a prism with
a constant cross-section can reach under dead load. σ/ρ groups all terms referring to
material, an important question. Table 1 shows typical values of parameter σ/ρ.

Material σ/ρ (m)
Masonry 5,000
Reinforced concrete 300
Typical sawn timber 1,500
Normalised mild steel 2,100
Steel for cables 10,000
Carbon fibres 40,000

Table 1: Approximated values of (σ/ρ) for different materials.

One major breakthrough introduced by Prof. Ricardo Aroca was to clarify the
parameter µ for the case of a set of vertical forces and a horizontal span, and bounding
the geometrical changes to a set of affine transformations that keep the abscises of
the nodes (in order to keep the span):

PDL =
1

σ/ρ
µP L =

1
σ/ρ

P L k

(
λ

λo

+
λo

λ

)

︸ ︷︷ ︸

µ

(10)

where λ is the slenderness of the structure, defined by the span L divided by
the maximum depth h, λ = L/h; λo the optimal slenderness, i.e. the slenderness
associated with minimum weight (i.e. with minimum W ); and k is a constant function
of the scheme or topology of the structure.

Dead load is thereby expressed with an absolute and clear separation of the key
variables in the problem:

PDL =
1

σ/ρ
︸︷︷︸

MAT ERIAL

P
︸︷︷︸

LOAD

L
︸︷︷︸

SP AN

k
︸︷︷︸

SCHEME

(
λ

λo

+
λo

λ

)

︸ ︷︷ ︸

SLENDERNESS

(11)

where

W = P Lk

(
λ

λo

+
λo

λ

)

(12)

Scheme and slenderness, both geometrical variables, are therefore distinguished
in the layout. Slenderness refers explicitly to only one variable, the ratio between
the span and the maximum weight. But scheme implicitly assumes fixed abscises at
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the nodes and also the ratio between their ordinates. The examples in Section 4 will
clarify this important question.

The term λ
λo

is linked with Wx and the term λo

λ
with Wy; which means:

Wx = P Lk

(
λ

λo

)

Wy = P Lk

(
λo

λ

) (13)

For the optimal slenderness, λ = λo, these structural quantities are therefore equal:

Wx,0 = Wy,0 (14)

The minimum structural quantity, W0, for this scheme is:

W0 = 2Wx,0 = 2Wy,0 = P L2k (15)

For

λ = λo → µ0 = 2k (16)

Constant k and the optimal slenderness λ0 can be computed using Eq. 13:

WxWy = P 2L2k2 → k =

√
WxWy

P L
(17)

Wy

Wx

=
λ2

0

λ2
→ λ0 = λ

√

Wy

Wx

(18)

Finally let us return to Eq. 11. When a structure reaches its maximum span Lmax,
it can only bear dead load, i.e. P = PDL, and therefore:

PDL =
1

σ/ρ
PDLLmaxk

(
λ

λo

+
λo

λ

)

→ Lmax =
σ

λ

1

k
(

λ
λo

+ λo

λ

) (19)

Notice that k(λ/λ0+λ0/λ) = µ (see Eq. 8) (this represents the quantity of material
per unit of load and span µ = W/(P L)) and therefore:

Lmax =
σ

ρ

1
µ

(20)

The previous equation can be derived at the limit state L = Lmax from Eq. 8, as
was done in Eq. 18. It can be used for cases where an affine transformation does not
lead to a structure, and therefore Eq. 10 is not longer valid. But it must be applied
for each individual slenderness.

Buckling of the members can be considered in the script of MATLAB® assuming
a constant mean value as buckling coefficient (termed omega in the script) for all the
members in compression. In these cases, compression forces are multiplied for that
value in order to compute the increase of material due to local buckling. General
buckling was not studied in this exercise, and parametrical study related with omega
is not developed here.

4 Results

A MATLAB® script (see Appendix-A) computes the values of: W (Eq. 2), Wx

(Eq. 3), Wy (Eq. 4), (and Wz for a 3D case), k (Eq. 17), λ0 (Eq. 13), Lmax (Eq. 19
and Eq. 20). It was run for each type considering four values of slenderness: λ = λ0;
λ = 2λ0; λ = 12 and λ = 24. Buckling is not considered. Further explanations about
it will be given in the next Section.

Tables 2 to 26 summarise the results. Only typical building construction solutions
were studied by the students.
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The four values of slenderness were selected following the criteria below. Optimum
value, λ = λ0, without considering buckling and other factors such as wind load, the
cost of cladding, etc. Doubling the slenderness, λ = 2λ0, the increase of weight only
amounts to 25%:

(
λ=2λo

λo
+ λo

λ=2λo

)

(
λ=λo

λo
+ λo

λ=λo

) =
2, 5
2

= 1, 25 (21)

As buckling and other factors are not considered, the value of λ = 2λ0 is in fact
closer to the actual optimum slenderness, which agrees with what can be seen in
medium and long span built structures.

The other two recorded cases are λ = 12 and λ = 24.
For parallel chord trusses, diagonals at approx. 45 degrees and constant sizing for

chords and diagonals (i.e. with sizing for the maximum forces at those elements), and
an allowable longitudinal strain of ǫ = 0, 8 · 10−3; λ = 12 leads to a maximum relative
deflection of approx. 1/300; which uses to be a more than reasonable value for a
roof. Roughly speaking, typical simple supported roof trusses with λ = 12 do not
present stiffness problems. For medium and long span solutions typical slenderness is
2λ0 = λ = 12. This offers a better efficiency in strength.

λ = 24 leads to solutions where the stiffness control requires over-sizing, and this
is often assumed, especially in secondary members. It can be considered to be approx.
the upper limit for a simple supported frame.

The value of µ (see Eq. 8 and Eq. 16) is recorded in the results, as are µx and
µy, corresponding to Wx and Wy respectively. This is useful to see how for λ > 12,
µy and therefore Wy is negligible. It is also illustrative to confirm Eq. 15 for λ = λ0;
and also to see how Wx = Wy for λ = λ0 (see Eq. 15). The increase of weight from
λ = 12 to λ = 24 is approximately proportional to the increase in slenderness. This
is because the value of λ/λ0, related to Wx is predominant (the term λ/λ0, related
to Wy , almost vanishes from approximately λ > 8).

Tables included in the figures below explicitly compute the quantity of material
for the four analyzed values of slenderness.

The script plots the layout to scale. It is important that the student were able
to see the exact proportion of all cases, so that they could store them in their visual
memory. The figures in this section are also drawn to scale for the same reason.

Lmax is obtained from (Eq. 19),and it is a theoretical upper bound. For an actual
problem, where many other variables are considered, the maximum actual span ac-
cording to experimental data is around 20% of that limit. This value is recorded for
the case of normalised mild steel.
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λ0 = 3.13 k = 0.765 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.52(0.76/=) (σ/ρ)/1.52 276
= 2λ0 1.91(1.53/0.38) (σ/ρ)/1.91 219
12 3.13(2.93/0.20) (σ/ρ)/3.13 134
24 5.97(5.87/0.10) (σ/ρ)/5.97 70

Table 2: Results for type #1.

λ0 = 2.69 k = 0.7416 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.48(0.74/=) (σ/ρ)/1.48 283
= 2λ0 1.85(1.49/0.37) (σ/ρ)/1.85 227
12 3.47(3.30/0.17) (σ/ρ)/3.47 121
24 6.68(6.60/0.08) (σ/ρ)/6.68 63

Table 3: Results for type #2.

λ0 = 2.1214 k = 1.4142 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.83(1.41/=) (σ/ρ)/2.83 149
= 2λ0 3.54(2.83/0.71) (σ/ρ)/3.54 119
12 8.25(8.0/0.25) (σ/ρ)/8.25 51
24 16.12(16/0.12) (σ/ρ)/16.1 26

Table 4: Results for type #3.

λ0 = 2.5715 k = 1.0874 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.17(1.09/=) (σ/ρ)/2.17 193
= 2λ0 2.72(2.17/0.54) (σ/ρ)/2.72 155
12 5.32(5.07/0.23) (σ/ρ)/5.32 79
24 10.3(10.2/0.12) (σ/ρ)/10.3 41

Table 5: Results for type #4.
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λ0 = 2.953 k = 0.978 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.93(0.97/=) (σ/ρ)/1.93 217
= 2λ0 2.44(1.96/0.49) (σ/ρ)/2.44 172
12 4.22(3.98/0.24) (σ/ρ)/4.22 100
24 8.07(7.95/0.12) (σ/ρ)/8.07 52

Table 6: Results for type #5.

λ0 = 3.397 k = 0.9518 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.90(0.95/=) (σ/ρ)/1.90 221
= 2λ0 2.38(1.90/0.48) (σ/ρ)/2.38 177
12 3.63(3.36/0.27) (σ/ρ)/3.63 116
24 6.86(6.72/0.13) (σ/ρ)/6.86 61

Table 7: Results for type #6.

λ0 = 3.8376 k = 0.9381 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.88(0.94/=) (σ/ρ)/1.88 224
= 2λ0 2.34(1.88/0.47) (σ/ρ)/2.34 197
12 3.23(2.93/0.30) (σ/ρ)/3.23 130
24 6.02(5.87/0.15) (σ/ρ)/6.02 70

Table 8: Results for type #7.

λ0 = 1.4142 k = 1.4142 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.83(0.76/=) (σ/ρ)/2.83 149
= 2λ0 3.54(2.87/0.71) (σ/ρ)/3.54 119
12 12.17(12/0.17) (σ/ρ)/12.2 35
24 24.08(24/0.08) (σ/ρ)/24.1 17

Table 9: Results for type #8.
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λ0 = 1.789 k = 1.118 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.24(1.12/=) (σ/ρ)/2.24 188
= 2λ0 2.80(2.24/0.56) (σ/ρ)/2.80 150
12 7.67(7.50/0.17) (σ/ρ)/7.67 55
24 15.08(15/0.08) (σ/ρ)/15.08 28

Table 10: Results for type #9.

λ0 = 2 k = 1 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2(1/=) (σ/ρ)/2 210
= 2λ0 2.5(2/0.5) (σ/ρ)/2.5 168
12 6.17(6.00/0.17) (σ/ρ)/6.17 68
24 12.08(12/0.08) (σ/ρ)/12.08 35

Table 11: Results for type #10.

λ0 = 2 k = 1 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2(1/=) (σ/ρ)/2 210
= 2λ0 2.5(2.00/0.50) (σ/ρ)/2.5 168
12 6.17(6.00/0.17) (σ/ρ)/6.17 68
24 12.08(12/0.08) (σ/ρ)/5.42 35

Table 12: Results for type #11.

λ0 = 1.8619 k = 0.9309 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.86(0.93/=) (σ/ρ)/1.86 226
= 2λ0 2.33(1.87/0.47) (σ/ρ)/2.33 180
12 6.14(6/0.14) (σ/ρ)/6.14 68
24 12.07(12/0.07) (σ/ρ)/12.07 35

Table 13: Results for type #12.
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λ0 = 2.2039 k = 1.0285 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.06(1.03/=) (σ/ρ)/2.06 204
= 2λ0 1.71(1.37/0.34) (σ/ρ)/1.71 163
12 5.79(5.60/0.19) (σ/ρ)/5.79 73
24 11.29(11.2/0.09) (σ/ρ)/11.3 37

Table 14: Results for type #13.

λ0 = 2.2206 k = 0.7731 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.55(0.77/=) (σ/ρ)/1.55 272
= 2λ0 1.93(1.55/0.39) (σ/ρ)/1.93 217
12 4.32(4.18/0.14) (σ/ρ)/4.32 97
24 8.43(8.36/0.07) (σ/ρ)/8.43 50

Table 15: Results for type #14.

λ0 = 2.5462 k = 0.7554 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.56(0.78/=) (σ/ρ)/1.56 270
= 2λ0 1.89(1.51/0.38) (σ/ρ)/1.89 222
12 3.72(3.56/0.16) (σ/ρ)/3.72 113
24 7.20(7.12/0.08) (σ/ρ)/7.20 58

Table 16: Results for type #15.

λ0 = 3.0789 k = 0.8117 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.62(0.81/=) (σ/ρ)/1.62 259
= 2λ0 2.03(1.62/0.41) (σ/ρ)/2.03 207
12 3.37(3.16/0.21) (σ/ρ)/3.37 125
24 6.43(6.33/0.10) (σ/ρ)/6.43 65

Table 17: Results for type #16.
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λ0 = 2.93 k = 0.946 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.89(0.95/=) (σ/ρ)/1.89 222
= 2λ0 2.36(1.89/0.47) (σ/ρ)/2.36 178
12 4.11(3.87/0.23) (σ/ρ)/4.11 102
24 7.86(7.75/0.12) (σ/ρ)/7.86 53

Table 18: Results for type #17.

λ0 = 2.93 k = 0.946 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.97(0.98/=) (σ/ρ)/1.97 213
= 2λ0 2.46(1.97/0.49) (σ/ρ)/2.46 171
12 3.56(3.26/0.30) (σ/ρ)/3.56 118
24 6.67(6.52/0.15) (σ/ρ)/6.67 63

Table 19: Results for type #18.

λ0 = 5.316 k = 1.0872 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.17(1.09/=) (σ/ρ)/2.17 193
= 2λ0 2.50(2.17/0.54) (σ/ρ)/2.50 168
12 3.29(2.88/0.41) (σ/ρ)/ 3.29 128
24 5.96(5.76/0.21) (σ/ρ)/5.96 70

Table 20: Results for type #19.

λ0 = 5.728 k = 1.257 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.51(1.26/=) (σ/ρ)/2.51 167
= 2λ0 3.14(2.51/0.63) (σ/ρ)/3.14 134
12 3.23(2.63/0.60) (σ/ρ)/3.23 130
24 5.57(5.27/0.30) (σ/ρ)/5.57 75

Table 21: Results for type #20.
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λ0 = 4.0503 k = 0.8888 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.78(0.89/=) (σ/ρ)/1.78 236
= 2λ0 2.22(1.78/0.44) (σ/ρ)/2.22 189
12 2.93(2.63/0.30) (σ/ρ)/2.93 143
24 5.42(5.27/0.15) (σ/ρ)/5.42 78

Table 22: Results for type #21.

λ0 = 5.8985 k = 1.2207 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 2.44(1.22/=) (σ/ρ)/2.44 172
= 2λ0 3.05(2.44/0.61) (σ/ρ)/3.05 138
12 3.08(2.48/0.60) (σ/ρ)/3.08 136
24 5.27(4.97/0.30) (σ/ρ)/5.27 80

Table 23: Results for type #22.

λ0 = 2.2678 k = 0.8819 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.76(0.88/=) (σ/ρ)/1.76 238
= 2λ0 2.20(1.76/0.44) (σ/ρ)/2.20 190
12 4.83(4.67/0.17) (σ/ρ)/4.83 87
24 9.42(9.33/0.08) (σ/ρ)/9.42 45

Table 24: Results for type #23.

λ0 = 2.27 k = 0.683 for steel with
(σ/ρ)=2100 m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.37(0.68/=) (σ/ρ)/1.37 307
= 2λ0 1.71(1.37/0.34) (σ/ρ)/1.71 247
12 3.73(3.60/0.34) (σ/ρ)/3.73 113
24 7.26(7.20/0.06) (σ/ρ)/7.26 58

Table 25: Results for type #24.
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λ0 = 2.4914 k = 0.8028 for steel with
(σ/ρ)=2100m

λ µ(µx/µy) Lmax 0.2Lmax ( m)
= λ0 1.61(0.80/=) (σ/ρ)/1.61 262
= 2λ0 2.01(1.61/0.4) (σ/ρ)/2.01 209
12 4.03(3.87/0.17) (σ/ρ)/4.03 104
24 7.82(7.73/0.08) (σ/ρ)/7.82 54

Table 26: Results for type #25.

5 Discussion

Fig. 2 plots the efficiency value µ (in ordinates) for the different types (with their
reference number in abscises) and for the four analyzed values of slenderness.

Figure 2: Efficiency µ (in ordinates) for each type (reference number in abscises) at the four
analyzed values of slenderness

Fig. 3 plots the same results as Fig. 2 but removes the seven worst solutions; in
particular types #3 and 8 to 13.

Figure 3: Efficiency µ (in ordinates) for each type (reference number in abscises) at the four
analyzed degrees of slenderness when types #3, 8 to 13 are removed

Types #3, 8 to 13 are shown at Fig. 4.
They share the same problem: a low angle between the chord and the tie at one

or both springs. This question is especially critical when slenderness is increased.
It is also useful to filter out the previous plot for optimum slenderness, as is shown

in Fig. 5 and Fig. 6.
Types #4, #19, #20 and #22 (see Fig. 7) present intermediate efficiency. Al-

though they are unlike the worst cases, they are still not as good as the best ones.
Their problem is the angle between diagonals and chords, which should be between
30 and 60 degrees for a good efficiency.
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Figure 4: Types with the lowest efficiency removed from Fig. 2.

Figure 5: Efficiency µ (in ordinates) for each type (reference number in abscises) at optimum
slenderness.

Figure 6: Efficiency µ (in ordinates) for each type (# in abscises) at optimum slenderness
when types #3, 8 and 9 to 13 are removed.

Figure 7: Types with an intermediate efficiency.

Removing types #4, #19, #20 and #22 would lead to a group of types with small
differences.

The four best ones can be seen in Fig. 8. The differences between them are quite
small, especially between the trusses.

Two important questions should be kept in mind here:

1. The quantity of material is just one component of the cost of a structure. De-
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Figure 8: The best four types compared at their optimal slenderness.

pending on the material and type, its influence on cost varies, but can easily
be only 1/3 to 1/4 of the total cost. This means that a less efficient scheme
can be more than counterbalanced by the simplicity of its construction. This is
a crucial question, as it notably reduces or modifies the theoretical differences
between schemes. And this increases the key role of slenderness.

2. On other hand, cost is obviously not the only objective in architecture. The
requirement uses to be to achieve a reasonable cost, but not an optimum one.

The differences shown in Fig. 2 can be therefore smaller or almost null in practice,
especially when architectural values are added.

The range of efficiency for optimum slenderness is not kept when slenderness is
increased. For example, let us compare type #24, the best one, with type #22. For
a slenderness of λ = 12 type #22 is slightly better, and for λ = 24 is notably better.
This is once again related to the low angle between the chord and tie at the springs in
type #24 once slenderness is increased. Michell’s theory (Michell, 1904) states that
the sufficient condition for a minimum is that members at tension and compression
intersect with angles of 90 degrees. The angles between these in type #22 stand at
around 60 degrees, leading to a better solution.

Figure 9: Comparison of the efficiency value µ between types #22 and #24 for slenderness
of λ = 12 and λ = 24.

Last but not least, let us show how powerful the slenderness value is. The good
schemes of type #24 and type #22 are now compared with the worst one, type #3,
and another one which also has low efficiency, type #10. The comparison is made
when the first two have λ = 24 and the second ones λ = 2λ0. As can be seen in
Fig. 10, proper slenderness counterbalances the lower quality of the scheme.

Figure 10: Comparison of the efficiency value µ between types #24 and #22 with types #3
and type #10 for a slenderness of λ = 24 and λ = 2λ0 respectively.

Although other built examples will be shown in the next section, let us now depict
two masterpieces basically built with types #3 and #10.

The first work is the chapel designed in 1957 by Heikki and Kaija Siren in Otaniemi
(Fig. 11);corresponding to type #3, the worst scheme. The low slenderness of the
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structure agrees with the need for natural light and a steep slope to prevent snow
retention.

Figure 11: Chapel in Otaniemi, Finland. 1957. Architects: Heikki and Kaija Siren (© Ismael
García Rios).

The second one is a design by Alvar Aalto for the city hall of Säynätsalo; corre-
sponding approx. to type #10, but following a spatial arrangement, which is a logical
and beautiful variation.

Figure 12: Roof structure in the City Hall of Säynätsalo, Finland, 1952. Architect: Alvar
Aalto (© Jose L Fernandez Cabo.)

Seeing their slenderness it is now clear (with Fig. 10 in mind) that, while mas-
terpieces from an architectural point of view, they additionally have a good efficiency
value µ; and, even better, simplicity.

Good structural efficiency does not guarantee architectural success. But the two
examples above prove that these good qualities are compatible.

It is usually possible to choose a proper slenderness in the case of roofs. As the
majority of architectural spans are low or medium, designers have huge freedom in
layout.

When a high slenderness is mandatory (as often happens), choosing types like #22,
with parallel chords and diagonals at an angle to those chords of around 60 degrees
is surely a good solution. But there are still other subtle decisions that can modify
the range of good solutions, as will be shown in the next section. As an example, for
short spans and high slenderness, commercial mild steel profiles are the best choice
from the economic point of view, as readers can see in typical portal frames.

6 Review of structures: additional comments

The exercise was undertaken under simple assumptions. Actual structures must
take many other variables into account. The revision of built examples can help place
this exercise in a real context.

The exercise used a five point load scheme. Why? Because it can be considered to
be a problem with continuous load. This is because the main scheme of a structure
always corresponds to a limited group of point loads. How many depend on the
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problem, but there tend to be just a few points in load schemes. Let us see some
examples.

Figure 13: Highway overpass near Galapagar, Madrid, Spain.1966. Engineering: Carlos
Fernández Casado, Leonardo Fernández Troyano and Javier Manterola Armisén (© Jose L
Fernandez Cabo).

Fig. 13 shows a highway overpass close to Galapagar, Madrid, 48 m span. The
deck is variable in depth from 0.6m at the abutments to 1.6m over the supports and
0.8m at the mid-span. See http://www.cehopu.cedex.es/cfc/obras/FC-123.htm

for additional details. The general scheme is a funicular of three point loads. This
shape allows a variable deck according to the variation of the secondary bending
moments, which are crucial in this type of structure for strength and stability. 48m
is a medium span for building structures.

Fig. 14 depicts the Infante D. Henrique bridge at Porto 280 m in span, the main
scheme is again a funicular corresponding to just eight point loads. This design follows
others by Robert Maillart and Christian Menn. The local slenderness for the arch
elements is 186.5, which is really huge and unusual, and it is possible due to the
relative local slenderness of the deck beam of 62.2. The arch has a slenderness of 11.2
(typical ones are usually from 5 to 8). The authors are aware of this challenge, but
this high slenderness is assumed for aesthetic reasons.

Figure 14: Infante D. Henrique bridge, Porto, Portugal. Engineering: IDEAM and Adão da
Fonseca & Associados, SA. 1999 - 2002. (© Jose L Fernandez Cabo).

Both previous examples show how typical schemes in bridges collect the actual
load in a small number of point loads. Of course this is also the case in building
structures. Fig. 15 shows the roof of the main train station in Zürich. The main
scheme corresponds to arches with two point loads. The depth of the arch, and the
main supports of the primary arches, means they are able to bear non-funicular loads.

On other hand, loads are variable in nature, and real optimization can only be
achieved assuming different load cases. This reinforces the need to use simple main
schemes.

Simplicity also explains why optimum structural schemes using Michell’s princi-
ples, usually complex, are actually not optimum from a practical point of view.
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Figure 15: Zürich main train station, Switzerland (© Jose L Fernandez Cabo).

Fig. 16 shows a crane used for the erection of a highway overpass, and one can
expect an optimum design to be used for such a crane. And basically it is. It uses
a scheme that is really efficient but also simple: good slenderness, a slope of the
diagonals in the cantilever from 30 to 45 degrees, and a very efficient layout for
anchoring the cantilever (Fig. 16b). A Michell layout for that corner is shown in Fig.
16c. It is clear that its complexity, and the consideration of buckling, actually makes
it more expensive than the built solution. The depth of the secondary spatial truss
elements makes it able to resist secondary internal forces.

Figure 16: Crane for the erection of a highway overpass in France. a) general view; b)
detailed view of the corner; c) Michell’s layout for the corner (© Jose L Fernandez Cabo).

Figure 17: (left) Bridge over the river Grijalva at Villahermosa, Tabasco, Mexico. 116m
span. Engineering: Carlos Fernández Casado SL . 2001; © Carlos Fernández Casado SL;
(right) Michell’s layout for a double cantilever beam and continuous load.

Fig. 17 (left) is another bridge with tilt piles. The three-bay configuration makes
possible a really efficient design and a practical approximation for Michell’s layout of
a double cantilever beam under continuous load (see Fig.17, right). Notice how the
middle bay is longer than the sum of the lateral bays, in order to prevent the cables
getting slack in a non-symmetrical load case (i.e. due to compression internal forces).

The previous example explains why the cable-stayed bridge in Fig.18 has the pile
tilted forwards, thereby giving better angles between the cables and the deck (not less
than approx. 30 degrees). Fig.18 (right) depicts a view of the deck that has to resist
an important torque moment when only one lane is loaded. This again shows how
the main layout is designed for the critical load pattern, almost never for all possible
ones.
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Figure 18: Bridge over N-VI highway close to Las Rozas, Madrid. 107 m span. 2006.
Engineering: Arenas y Asociados. (© Jose L Fernandez Cabo).

Fig. 19 to Fig. 20 show also a example of a scheme with not so good efficiency but
which use a slenderness λ0 < λ < 2 ·λ0 which finally gives rise to a rational structure.

Figure 19: Alvar Aalto. Roof structure at University of Jyväskyla, Finland. 1951-7. (© Jose
L Fernandez Cabo).

Fig. 21 shows a bridge with a structure related to type #12. The good slenderness
of the main scheme and the pre-stressed ties explains its good efficiency, and even
more so if it is compare with the typical solution where only a concrete deck without
external pre-stressed tendon is used.

Figure 20: (left) Roof of a sawmill of Valsaín, Segovia, Spain; (right) Vihantasalmi bridge,
Finland. (© Jose L Fernandez Cabo).

The rules for designing efficient trusses were clarified, more empirically than theo-
retically, during the second half of the XIX century. Fig.22 shows an example designed
by Owen Williams at 1930-32 for a Boots factory, a well-known masterpiece that was
at the forefront of modern industrial architecture. It has a slenderness of approx. 9
and diagonals at angles around 45 degrees.
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Figure 21: Bridge at Osomort, Barcelona, Spain. 13 bays with a 40m span. Engineering:
Carlos Fernández Casado SL. 1994-95. (© Jose L Fernandez Cabo).

Figure 22: Boots factory. Designed by Owen Williams.1930-32. Nottingham, UK. (© Jose L
Fernandez Cabo)Boots factory. Designed by Owen Williams.1930-32. Nottingham, UK. (©
Jose L Fernandez Cabo).

Fig. 23 and Fig. 24 are recent examples of trusses for medium spans. These too
follow the rules described above, and have a slenderness λ0 ≤ λ ≤ 2 · λ0.

Figure 23: Cité des sciences et de l’industrie, Park de la Villette, Paris. (© Jose L Fernandez
Cabo).
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Figure 24: Media TIC, Barcelona. Architect: Enric Ruiz Geli; Structure: Agustí Obiols,
BOMA. 2009. (© Jose L Fernandez Cabo).

Lenticular trusses were mainly used in the second half of the XIX century. Even
when a good slenderness is used, a low angle between the chord and the tie at the
springs reduces its efficiency. But that deficiency is balanced at the lenticular truss
shown in Fig. 25 (122 m span) by the pre-stressed lower chord, where a high strength
cable is used.

Figure 25: Exhibition hall at Hannover, Germany. 122m span. Architect: Gerkan, Marg
und Partner. Structure: Schlaich Bergermann and partner. 1995. (© Jose L Fernandez
Cabo).

Figure 26: Evenstand bridge, Norway. Engineering: Otto Kleppe (© Jose L Fernandez
Cabo).

Fig. 26 shows a timber bridge related to type #15, one of the best ones, but using
a curved upper chord. The upper chord is not polygonal but curved, to prevent using
complex joints and paying just a small additional price for local stability. It is a good
and typical solution. The arch is the most common historical type for medium spans
(which at the time were long spans).
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Kubel bridge (Fig. 27) near St. Gall, designed by Hans Grubenmann in 1780, is a
type similar to #24, the best one. It has a single span of around 30m. The polygonal
shape is explained by the use of sawn timber. A secondary truss-like system solves
non-funicular loads. This is a brilliant piece of work.

Figure 27: Kubel bridge near St. Gall, Switzerland, 1780; designed by Hans Grubenmann
(© Jose L Fernandez Cabo).

A similar modern example is shown in Fig. 28. This secondary element is built
with bowstring type of approx. 10m in span made of timber and steel. The stiffness of
the timber beams resolves non-funicular loads. This is a clean an efficient structure.

Figure 28: Ice Rink at Memmingen, Germany. Architect: Börner und Pasmann, Memmin-
gen. Structure: Schlaich Bergermann and partner 1988 (© Jose L Fernandez Cabo).

Good schemes can be more complex. Ardant trusses, a combination of an arch
with the rafters of classical roofs, competed against Polonceau trusses during the
middle of the XIX century. Fig.29 shows an interesting example, containing the first
laminated arch building in Europe (1964-65). The web is resolved using cast iron,
timber and steel bars.

Figure 29: Roof of the German Gymnasium. London. UK. 1864-65 (© Jose L Fernandez
Cabo).
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Bowstrings, as in the example shown in Fig.30, are efficient structures when a
proper slenderness, as is the case here, is used. Notice the use of steel rebar for
the tie, a logical decision to resolve the joint at the springs. Web systems do not
necessarily require so many elements. It is possible to solve this question with just
some struts while using greater depth at the upper chord, as was shown in Fig.28.

Figure 30: Sport Hall, bowstring of 60m span made of timber and steel rebar (© Jose L
Fernandez Cabo).

A roof needs cladding. The use of profiled steel sheeting for the cladding can also
form the sub-structure, usually an arch or a even a shell (with more than one panel).
Let us see two examples.

The first example is the new shed for Leuven train station (Fig.31).

Figure 31: New shed for Leuven train station, Belgium (© Jose L Fernandez Cabo).

The second, a humble roof, is shown in Fig. 32. Notice how the high depth of
the steel plate with multiple folding (for local stability) is able to resolve an approx.
12 mspan with almost no other additional elements.
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Figure 32: Multifunctional shed, Vicálvaro, Madrid (© Jose L Fernandez Cabo).

Complexity is present in many brilliant works. Fig. 33 and Fig. 34 show images
of Santa Caterina market, Barcelona. The governing idea was to fold the roof and
use coloured ceramic pieces as external cladding. This folded shape is incompatible
with the structural scheme for a transversal medium span, and therefore the main
arches do not follow the pattern of the roof (see Fig. 33). However, this is not finally
a problem. The steel arches, which are pre-stressed at their ties, have good overall
slenderness. The arch is built with a spatial truss whose depth resolves the secondary
internal forces and gives overall stability.

Figure 33: Santa Caterina market, Barcelona, Spain. Architect: Enric Miralles; Engineering:
José María Velasco, AMATRIA (© Jose L Fernandez Cabo (left); (© Joaquín Montón (right)).

Secondary beams follow a zigzag pattern (see Fig. 33 right and Fig. 34, left), which
does not give rise to any problems. Only in some places, such as at the supports of
the main façade (see Fig. 34, right), is the logic of the structure clearly violated. But
the price paid there is small in comparison with the total cost.

Figure 34: Santa Caterina market, Barcelona, Spain. Architect: Enric Miralles; Structural
Engineer: Jose María Velasco (© Jose L Fernandez Cabo).
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Although a cheaper structure could obviously be built, this structure fits the
architectural project, which is of particular interest, and offers a rational solution in
its critical elements.

The results of Section 4 take neither general nor local stability into account. Ten-
sile structures are selected in long spans, as the lack of any stability penalty notably
reduces their dead load. Any suspension or cable-stay bridge is an example of this.

But even in short and medium spans, arches can modify their general scheme in
order to address stability; as this is in fact the key problem for arches. Fig. 35 shows
a now classical and highly efficient example, a Network arch. A tie with camber
connected to the arch by a network of cables notably reduces the stability problem in
the vertical plane. The transveral tilting of arches controls lateral stability.

Figure 35: Network arch walkway for the Anillo Verde near Fuente del Berro, Madrid (©
Jose L Fernandez Cabo).

7 Conclusions

The dead load, maximum span and relative efficiency of a scheme with a particular
slenderness can be computed easily. This is also the case for local buckling, assuming
a certain mean penalty for compression members. Connections can easily increase
theoretical values by from 10-20%; but it is not taken into account in the examples.

The results show that slenderness is the key geometrical parameter for controlling
structural efficiency. The scheme, roughly speaking, is only crucial for a medium or
long span; and in any case proper slenderness is still needed. This is not an obvious
question at all.

Once good slenderness is achieved, the next step is simply to arrange the web
system in angles of around 45 degrees with a horizontal line. This means that the
higher the slenderness, the higher the number of elements connecting the chords.

The preliminary design of actual structures must include additional variables in
its analysis and design: e.g. construction topics. The review of built structure makes
it possible to place the exercise in a real context; showing how subtle and important
managing the different variables can be. Simplicity is crucial. Techniques such as
pre-stressing notably increase efficiency.

This article also presented architectural masterpieces built using short and medium
spans, with structural schemes of poor efficiency. Any real problem is complex, and
good solutions must take all of the variables into account. Although structural effi-
ciency does not guarantee architectural success, both items are in fact compatible.
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9 Appendix A script implemented in MATLAB®
(release 2010).

% The script firstly computes the internal forces of statically %
% determinate 3D wire -frame pin -jointed structures with point loads at %
% determinate 3D wire-frame pin-jointed structures with point loads at %
% nodes by means of assembling the equilibrium matrix. Direction of %
% restrains are limited to global axis. %
% Quantity of material, optimum slenderness and maximum size are then %
% derived %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

clc %clear command windows
clear %clear variables

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% INPUT OF general data needed for initializing variables
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

Num_Nod=3 % total number of nodes
Num_Bar=3 % total number of elements or bars
d=1 % auxiliary parameter, usually the total depth of the structure
omega=1 % assumed buckling factor

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% initialization of variables
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

H_t=zeros(Num_Nod*3,Num_Bar); % equilibrium matrix without restrains
Coor_Nod=zeros(Num_Nod,3); % matrix with the coordinates of the nodes
Coac_Nod=zeros(Num_Nod,3); % matrix with the restrains in global axis
Coac_Nod=zeros(Num_Nod,3); % matrix with the restrains in global axis

Coac_Nod_Vec=zeros(Num_Nod*3,1); % restrains in vector form
Equil_List=1:1:Num_Nod*3; % active Degrees of Freedom (DoF)
Conec_Nod=zeros(Num_Bar,2); % Connectivitymatrix
Conec_Nod=zeros(Num_Bar,2); % Connectivity matrix
Cos_Dir_Bar=zeros(4,Num_Bar); % cosine directors and length of the members
P_t=zeros(Num_Nod*3,1); % nodal load vector without considering restrains

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% INPUT of particular data
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% nodal coordinates in global axis X,Y,Z

Coor_Nod=[0,0,0; ...
1,1,0; ...
2,0,0]

% restrains in global axis X,Y,Z, 0= restrained, 1=free
Coac_Nod=[0,0,0; ...

1,1,0; ...
1,0,0]

% connectivity matrix
Conec_Nod=[1,2; ...

1,3; ...
2,3]

% nodal load vector without considering restrains
P_t(5)=-1

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% NO INPUT DATA ARE REQUIRED FROM HERE
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% loading restrains in vector form
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

for i=1:1:Num_Nod
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Coac_Nod_Vec(3*i-2)=Coac_Nod(i,1);
Coac_Nod_Vec(3*i-1)=Coac_Nod(i,2);
Coac_Nod_Vec(3*i)=Coac_Nod(i,3);
end

% load the location of restraints in the vector List_Coac
j=0;
for i=1:1:Num_Nod*3

if Coac_Nod_Vec(i)==0
j=j+1;
Coac_List(j)=i;

end
end

% active DoF where equilibrium is established
Equil_List=setdiff(Equil_List,Coac_List) Equil_List=setdiff(Equil_List,Coac_List)

% cosine directors l,m,n in the first three rows, the fourth one is % used for the length
of the bar.

for i=1:1:Num_Bar
ini=Conec_Nod(i,1);
fin=Conec_Nod(i,2); % initial and final node of a bar
Cos_Dir_Bar(4,i)=((Coor_Nod(fin,1)-Coor_Nod(ini,1))ˆ 2+(Coor_Nod(fin,2) ...

-Coor_Nod(ini,2))2+(Coor_Nod(fin,3)-Coor_Nod(ini,3))ˆ 2)ˆ 0.5; %length
Cos_Dir_Bar(1,i)=(Coor_Nod(fin,1)-Coor_Nod(ini,1))/Cos_Dir_Bar(4,i);
Cos_Dir_Bar(2,i)=(Coor_Nod(fin,2)-Coor_Nod(ini,2))/Cos_Dir_Bar(4,i);
Cos_Dir_Bar(3,i)=(Coor_Nod(fin,3)-Coor_Nod(ini,3))/Cos_Dir_Bar(4,i);
end
for j=1:1:Num_Bar
ini=Conec_Nod(j,1);
fin=Conec_Nod(j,2); %initial and final node of a bar
H_t(3*ini-2,j)=-Cos_Dir_Bar(1,j);
H_t(3*ini-1,j)=-Cos_Dir_Bar(2,j);
H_t(3*ini,j)=-Cos_Dir_Bar(3,j);
H_t(3*fin-2,j)=Cos_Dir_Bar(1,j);
H_t(3*fin-1,j)=Cos_Dir_Bar(2,j);
H_t(3*fin,j)=Cos_Dir_Bar(3,j);
end

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Assemblage of equilibrium matrix considering now the restrains

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
H=H_t(Equil_List,:);
COND_H=cond(H) % used to check if the matrix H were singular

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% vector with nodal forces considering now the restrains
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

P=P_t(Equil_List)
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% solve the linear system of equations
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

N=H\P;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% print the internal forces
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

num=1:1:Num_Bar;
esfuerzos=[num N] % print displacements

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Compute the quantity of material, W, including the buckling if defined at previous
data
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

N_w=N;
for i=1:Num_Bar
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if N_w(i)<0
N_w(i)=N_w(i)*omega;

end
end
L=Cos_Dir_Bar(4,:);
W=dot(L,abs(N_w))

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Compute the components x,y,z of the quantity of material;
% Wx Wy and Wz respectively
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

Wx=0; Wy=0; Wz=0;
for i=1:Num_Bar

Wx=Wx+abs(L(i)*N(i)*Cos_Dir_Bar(1,i)ˆ 2);
Wy=Wy+abs(L(i)*N(i)*Cos_Dir_Bar(2,i)ˆ 2);
Wz=Wz+abs(L(i)*N(i)*Cos_Dir_Bar(3,i)ˆ 2);

end
Wx Wy Wz

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Compute the Form Factor with and additional operation by the user
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

fact_esquema_k_2D=(Wx*Wy)ˆ 0.5
disp( divide that value by the total load and by the span )

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Compute the Optimal Slenderness with and additional operation by the user
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

esbelez_opt_2D=(Wy/Wx)ˆ 0.5
disp( multiply that value by the current slenderness )

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Draw structure (at its initial stage)
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

figure
hold on
for i=1:Num_Bar

conect=Conec_Nod(i,:);
xcoord = [Coor_Nod(conect(1),1) Coor_Nod(conect(2),1)];
ycoord = [Coor_Nod(conect(1),2) Coor_Nod(conect(2),2)];
zcoord = [Coor_Nod(conect(1),3) Coor_Nod(conect(2),3)];
line(xcoord,ycoord,zcoord);

end
axis equal ; axis tight ;
axis([-1 (max(Coor_Nod(:,1))+1) -1 max(Coor_Nod(:,2))+1 -1 max(Coor_Nod(:,3))+1]);

hold off
figure(gcf)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by Jose L Fernandez-Cabo, Department of %
% Building Structures, Universidad Politécnica de Madrid, Avenida Juan de %
% Herrera 4, 28040, Madrid. %
% Any comment can be sent to: jose.fcabo@upm.es %
% The theoretical basis can be viewed at http://oa.upm.es/10742/, even though %
% the document is in Spanish and the program is implemented in MAPLE. %
% This code is intended for educational purposes. %
% Disclaimer: %
% The author reserves all rights but does not guarantee that the code is %
% free from errors. Furthermore, he shall not be liable for any event %
% caused by the use of the program. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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