

EFICIENCIA ENERGÉTICA. TRADICIONES VERSUS NUEVAS SOLUCIONES

RICHARD VARAS MADRID

Arquitecto. Universidad de la Serena, Chile.

PALABRAS CLAVE:

Eficiencia energética / Adobe / Consumo calefacción / Vivienda social / Paihuano.

RESUMEN:

El crecimiento desenfrenado de las ciudades latinoamericanas y las ideas de globalización han atentado en contra de los valores y modos de vida de las comunidades rurales, esto se refleja en el medioambiente construido de los pueblos del norte chileno donde se aprecia de forma paulatina y creciente, un cambio de criterio en las nuevas construcciones. Es en las viviendas sociales donde se puede apreciar este hecho de manera más evidente; cada vez se asimilan más a las soluciones habitacionales de la periferia de la ciudad y se alejan del modelo tradicional construido a través de los años. Esta investigación se centra en evaluar el rendimiento energético de las viviendas tradicionales de Paihuano, un pueblo típico del Valle del Elqui del norte chileno, y compararlo con el consumo de las viviendas sociales del mismo pueblo, construidas e impulsadas por el gobierno en las últimas décadas, esto para crear un criterio y conciencia sobre como las soluciones de

viviendas desarrolladas pueden significar un retroceso en otros aspectos como la eficiencia energética.

KEY WORDS:

Energy efficiency / Adobe / Heating consumption / Social Housing / Paihuano

ABSTRACT:

The unrestrained growth of Latin American cities and the ideas of globalization have attack against the values and lifestyles of rural communities, this is reflected in the built environment of the peoples of northern Chile where it is appreciated and growing gradually, a policy change in new construction. It is in social housing where you can appreciate this fact more evident is increasingly linked more to the housing solutions on the outskirts of the city and away from the traditional model built over the years. This research focuses on assessing the energy performance of the traditional houses of Paihuano, a village in the Elqui Valley in northern Chile, and compared with the consumption of social housing in the same town, built and driven by the government in recent decades, this to create an awareness approach and the solutions developed housing can mean a setback in other areas such as energy efficiency.

1. VIVIENDAS TRADICIONALES Y EFICIENCIA

La búsqueda de un equilibrio entre las necesidades de consumo y los recursos existentes son la base de la eficiencia energética, es por esta razón que el crecimiento demográfico se ha transformado en un problema importante, ya que ha significado un aumento considerable de las necesidades de consumo, lo que conlleva a una extracción desproporcionada e inadecuada redistribución de los recursos, contaminación por generación de CO₂, entre otros problemas.

Paralelo a esto la sociedad ha ido acercándose a los ideales de la globalización en donde el acceso a información, recursos y servicios están al alcance de la mayoría. Esto implica de alguna manera que los ideales de consumo (y por lo tanto la ilusión de necesidad) hayan ido cambiando hacia una realidad más homogénea, dejando de lado las tradiciones locales y asimilando tendencias o modas globales. Lo anterior se refleja en un mayor gasto por concepto de traslado de recursos, la caída de los productores locales que no puedan competir, asimetría en la

distribución de ganancias y también la pérdida de identidad de las localidades más pequeñas.

Si bien es cierto que la homogenización de estándares de vida ha significado un aumento en la calidad de vida de las comunidades más alejadas, (como por ejemplo el acceso a agua potable, electricidad, telefonía, medicinas, y un largo etcétera.) no es menos cierto que muchas veces se ha implantado un modelo, no respetando tradiciones, costumbres o ni siquiera modificando variables para ver si los resultados serán los esperados o significarán un retroceso en la comunidad.

La realidad de los asentamientos rurales en Chile ha ido cambiando con el paso del tiempo, han tenido una caída del crecimiento demográfico⁷. los sistemas tradicionales de economías locales (agrícolas, mineros, ganaderos), han dado paso a economías basadas en turismo, en conglomerados que manejan grandes extensiones de terreno agrícola o empresas mineras que hacen un trabajo más eficiente en la extracción de los recursos. Se suman a estos cambios las transformaciones formales de los asentamientos o localidades, donde se ha alterado la materialidad, la superficie y el entorno de las viviendas, cambiando las condiciones de cómo estas comunidades se relacionaban con su territorio.

Esta investigación tratará de evaluar como algunos cambios repercuten en temas más globales (como el gasto energético), en comunidades donde tradicionalmente estos temas estaban resueltos por las costumbres, tradiciones, trazados originales o uso de los materiales locales, los que han pasado a dar lugar a una especie de mimetización a entornos periféricos de ciudades tradicionales.

1.1 CAMBIO DE MATERIALIDAD Y EFECTOS AMBIENTALES

La investigación se plantea desde el punto de vista de aportar evidencia teórica que nos permita entender si los procesos de cambio del parque construido en las localidades rurales en Chile significan un aporte o no a los lineamientos de sostenibilidad.

Si bien el crecimiento demográfico de las comunidades rurales en Chile ha ido disminuyendo, también se ha ido modificando el parque construido debido a la falta de mantención de viviendas, problemas estructurales producidos por terremotos, creación de nuevas familias, etc. A esto se suma que en muchas localidades existe un número alto de viviendas (en su mayoría viviendas tradicionales de barro) que se encuentran desocupadas debido a su estado de deterioro o a que sus dueños se han ido a vivir a ciudades cercanas.

La mayoría de las casas nuevas corresponden a loteos del SERVIU⁸ y son viviendas sociales de entre 36 a 48 m², de albañilería de ladrillo o bloque de cemento.

Secretaría regional de vivienda y urbanismo.


Según datos obtenidos en el INE (instituto nacional de estadísticas), en la comuna de Paihuano se presenta una variación negativa de -3,5% en el número de habitantes entre los Censos de 1970 y 2002.

A su vez las construcciones tradicionales son casonas de adobe tendido, adobe parado o quincha, que muchas veces albergan a más de una familia. No existe una uniformidad en los tamaños de las viviendas, pero si en sus formas que dependen de las posibilidades estructurales de los materiales empleados.

La investigación se hizo estudiando la realidad de Paihuano un asentamiento rural categorizado como "aldea en vías de convertirse en centro de actividad urbana" según el "Plan Regional de Desarrollo Urbano de la Región de Coquimbo" del año 2002. El poblado es un ejemplo de lo que ocurre en otras localidades rurales del Valle de Elqui y en general de la Región de Coquimbo, donde se puede apreciar claramente la intervención de nuevos loteos aledaños a la traza fundacional del pueblo, que responden más a criterios urbanos (terrenos pequeños, casas pequeñas, diseños de tipología urbana, etc.) que al modo de vida, clima y tradiciones de los poblados en los que se emplazan.

Se plantea comparar los nuevos loteos con la traza original en su gasto o consumo energético promedio por vivienda, y analizando variables como la materialidad, forma y orientación de la envolvente para ver como se relacionan con el consumo.

Figura 1. La fotografía muestra una imagen aérea de Paihuano en el año 2006, donde se puede apreciar el trazado original (Norte –Sur) del pueblo y los nuevos loteos sociales (ubicados en la izquierda de la imagen).

Fuente: Elaboración propia

Por último tenemos que la localidad de Paihuano está dentro de la zona térmica 3, según la clasificación del MINVU⁹, lo que permite evaluar una zona semidesértica que necesita de estrategias para su refrigeración y calefacción y poder verificar qué variables están ayudando a disminuir al mínimo la demanda de energía y optimar al máximo las ganancias internas y externas, ambos planteados como objetivos por el MINVU en las últimas modificaciones a la Ordenanza General de Urbanismo y Construcciones

Figura 2. Imágenes de una vivienda tradicional y una vivienda de loteo SERVIU.

Fuente: Elaboración propia

1.2 OBJETIVOS DE LA INVESTIGACIÓN

- 1. Determinar si el consumo por demanda de calefacción de las viviendas tradicionales de barro en el poblado de Paihuano es menor al consumo por demanda de calefacción de las viviendas de loteos propuestas por el SERVIU.
- 2. Determinar si el consumo por demanda de refrigeración de las viviendas tradicionales de barro en el poblado de Paihuano es menor al consumo por demanda de refrigeración de las viviendas de loteos propuestas por el SERVIU.
- 3. Evaluar la importancia de las variables seleccionadas y que afectan el valor de demanda energética en los casos expuestos, las variables elegidas son *materialidad de muros exteriores, orientación y forma de vivienda*.

⁹ Ministerio de Vivienda y Urbanismo.

Se aísla la variable materialidad de muros exteriores dentro del estudio de cerramientos o envolventes térmicos de la vivienda debido a que las cubiertas presentan materialidades parecidas en ambos grupos estudiados (cubiertas de planchas acanaladas de Zinc alum) lo que permite inferir que la diferencia de demanda energética de la envolvente, en cuanto a su materialidad, se debe principalmente a la diferencia de materialidad de los muros, además los muros exteriores afectan de una manera más directa la imagen urbana tradicional de los pueblos del valle.

1.3 JUSTIFICACIÓN DE LA INVESTIGACIÓN

- 1. Relevancia social del tema de la eficiencia energética, con respecto a los gastos producidos en viviendas sociales.
- Poner en valor los materiales tradicionales y locales en el desarrollo de nuevas viviendas, esto permitirá ayudar a la toma de conciencia del patrimonio rural construido y disminuir el gasto energético producto del traslado de materiales a zonas de más difícil acceso.
- 3. Crear conciencia para fomentar nuevas estrategias que permitan resolver problema habitacionales de manera particular en poblados con tradiciones y patrimonio rural previamente determinados.
- 4. Ayudar a generar una base teórica que permita desarrollar instrumentos metodológicos capaces de proponer estrategias o lineamientos para un diseño energéticamente eficiente en poblados rurales.

2. HIPÓTESIS SOBRE CONSUMO

- 1. Las viviendas tradicionales de la traza original de Paihuano tienen un menor consumo energético por concepto de demanda de refrigeración y calefacción que las viviendas sociales de los nuevos loteos.
- 2. Las viviendas ubicadas en la traza original de Paihuano tienen una orientación que les permite un menor consumo energético por concepto de demanda de refrigeración y calefacción que las viviendas sociales de los nuevos loteos.

- 3. Las viviendas tradicionales de la traza original de Paihuano que tienen muros exteriores de adobe tienen cerramientos (envolvente) más eficientes en relación a la pérdida de calor que las viviendas sociales de los nuevos loteos.
- 4. Las viviendas tradicionales de Paihuano tienen formas más eficientes para evitar pérdidas de calor en invierno y evitar ganancias de calor en verano que las viviendas sociales de loteos nuevos.

3. ASPECTOS RELEVANTES Y RESTRICCIONES DE LA INVESTIGACIÓN

En esta investigación se han priorizado variables como materialidad, forma y orientación de la envolvente, en desmedro de otras que se evalúan con valores bases para todas las muestras (aislaciones del sistema de cubierta, los flujos de energía al interior de la vivienda producto de su uso, existencia de elementos que generan sombras, etc.). Es por esta razón que no se considera la investigación como un intento de mostrar los reales consumos, ya que esto hubiera requerido mediciones en terreno de una serie de indicadores, con instrumentación especializada y con un tiempo y gasto de recursos que no están considerados para un estudio acotado como el presente.

Se utilizó para la investigación un software de eficiencia energética orientada al diseño, ECOTECT hace un análisis térmico a través del *Método de Admitancia*, usado para determinar las temperaturas internas y los consumos por calefacción. Si bien existe controversia sobre el uso del método de admitancia en el cálculo de rendimiento energético por consumo térmico, esta investigación no persigue encontrar valores de consumos precisos sino buscar relaciones con respecto a variables y criterios generales de consumo, lo que perfectamente puede ser demostrado a través del programa.

Se optó por comparar las viviendas edificadas con muros de barros (adobe tendido, adobe parado y quincha) existentes en el trazado original, omitiéndose del estudio las viviendas de otros materiales (madera, albañilerías y otros) ubicadas en el trazado original, para poder comparar un grupo más homogéneo con las viviendas nuevas de los loteos del SERVIU. No se consideraron ampliaciones de las viviendas originales hechas en otro material distinto al original.

No se hizo una mayor distinción en las distintas tipologías de construcciones tradicionales (adobe tendido, adobe parado y quincha) que la del espesor de sus muros, indicándose los mismos valores de transmitancia térmica, calor específico, densidad y otros solicitados en el software, esto debido a que no se encontraron datos específicos sobre cada una de las técnicas constructivas en base a barro, además la

dosificación y consistencia encontrada en terreno para las distintas tipologías constructivas era similar.

4. DESARROLLO

4.1 CONSUMO Y VARIABLES RELEVANTES

Como primera aproximación al desarrollo de los objetivos se propuso consultar bibliografía que permitiera reunir la información necesaria sobre capacidades térmicas de las construcciones en adobe, para eso se limitó la búsqueda a los valores solicitados por el programa ECOTECT y poder "construir" la base de datos que permitiera la construcción de los modelos.

```
Densidad del adobe = 1400 \text{ kg/m}^3.
Conductividad térmica adobe (\lambda) = 0.6 \text{ W/mK}.
Calor Especifico adobe (Cp) = 1100 \text{ J/KgK}.
```

Para los revoques exteriores e interiores se decidió trabajar con barro, ya que es lo más común encontrado en el poblado y además es lo recomendado según distintos autores. Debido a esto el material diseñado para el trabajo no hace distinción del material de muro o material de revoques, solo hace referencia al espesor del muro, el cual incluye el revoque.

Los indicadores catastrados en terreno para la construcción de la maqueta de análisis energético, fueron:

Materialidad muros exteriores, tabiques interiores y medianerías.

Ancho de muros.

Dimensión de vivienda en planta.

Altura piso-cielo.

Ubicación y forma de cubierta (existencia de aleros).

Ubicación, materialidad y tamaño de ventanas.

Ubicación, materialidad y tamaño de puertas.

En la variable forma, la existencia de árboles, parrones o espacios intermedios son de vital importancia para el cálculo de consumo y para la relación "Imagen Patrimonial" pero no fueron modelados en el software por una razón de separación de variables de estudio y tiempo de realización de la investigación.

Para el correcto desarrollo de la investigación se procedió a crear un archivo con el clima de Paihuano, según los datos entregados por el CEAZA MET (Centro de

estudios avanzados de zonas áridas, en su sección de meteorología.) Paihuano es una zona de clima tipo "estepa con gran sequedad atmosférica" según la "Zonificación climática de Chile según Köppen", zona que se caracteriza por las bajas precipitaciones, temperaturas que llegan sobre los 30 grados en verano y que llega a escasos grados sobre cero en invierno, las diferencias en el día pueden llegar a 20 grados entre mínima y máxima, tiene alta radiación y humedad baja. 10

4.2 DESARROLLO DE LA HIPÓTESIS 1 - CONSUMO

Se tomó una muestra con un error de 5% arrojando un primer grupo de muestras de 23 casos para las viviendas tradicionales y un segundo grupo de 31 casos para las viviendas SERVIU.

Para construir las maquetas se crearon datos específicos para los cerramientos verticales que se catastraron en terreno, tanto del caso de viviendas tradicionales como para el caso de viviendas de loteos nuevos.

Una vez introducidos los valores de los cerramientos bases a utilizar se procedió a la construcción de las maquetas de análisis energético, incorporándose la orientación particular de cada vivienda y construyéndose la situación de adosamiento (si el caso así lo ameritaba), Todos los recintos (zonas) creados en el software a nivel de piso se consideran térmicos, independiente su uso (Dormitorios, estar, cocina o baños), esto debido a que no se tuvo un catastro detallado de todos los recintos. (en especial en algunas tradicionales)

Se utilizó el software para equilibrar las ganancias y pérdidas de calor (producto de la ventilación, radiación directa, traspaso de calor por cerramientos y las ganancias internas producto del uso), con las de un sistema de calefacción y ventilación por aire acondicionado (HVAC), manteniendo un confort higrotérmico predefinido.

4.3 ANÁLISIS DE DATOS Y CONCLUSIONES

Una vez hecho el análisis de consumos de refrigeración y calefacción de todos los casos en un periodo anual se obtuvieron los resultados reflejados en la Figura 4.

La desviación estándar del consumo total en las viviendas tradicionales es de 9,75 kWh/m2año y el consumo va entre 14,33 y 52,94 kWh/m2año, en las viviendas de loteos la desviación estándar es de 10,11y los consumos varían entre 54,76 y 87,42 kWh/m2año.

Las actividades, ganancias y condiciones indicadas fueron evaluadas todos los días del año y con un porcentaje de actividad del 100% entre las 9 y las 22 hrs, de un 75% a las 8 y 23 hrs y de un 40% el resto de las horas.

Figura 3. Características de los elementos y materiales empleados y análisis de la zona de confort

Material	Espesor	Transmitancia	Admitancia		
Wiateriai	cm	W/m²K	W/m²K		
	M	UROS			
	25	1,68	4,49		
	40	1,18	4,47		
Adobe	50	0,99	4,47		
	60	0,85	4,47		
	80	0,66	4,47		
Ladrillo Gran titan arcilla	14	1,83	2,89		
Bloque Hormigón	14	3,03	4,99		
	19	2,74	5,24		
Panel 1 2 M C5		0,80	0,97		
	PU	ERTAS			
Solidcore, pine timber		2,31	3,54		
foamcore plywood		3,31	0,87		
VENTANAS					
Single glazed alumframe		6,00	6,00		
single glazed timber frame		5,10	5,00		
	TECHUMBRE				
Metal deck		7,14	7,10		
CIELO					
Plaster insulaton suspended	21	0,50	0,90		
SUELO					
ConcSlab on ground		0,88	6,00		

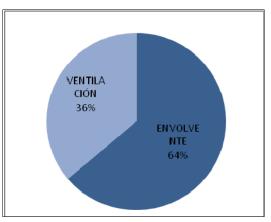
ZONA DE CONFORT			
Datos		Valor	
Humedad		60%	
Velocidad del aire		0,5 m/s	
Nivel de iluminación		300 lux	
Nº de personas por recinto		10 m ² /per	
Actividad	Sedentaria	70 W	
Ganancias internas	sensible	5 W/m ²	
	latente	5 W/m ²	
Ritmo de cambio de aire		0,5 cambio de aire por hora	
Sensibilidad del viento		0,25 cambio de aire por hora	
Rango térmico de confort		18°C a 26°C	

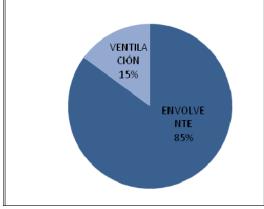
Fuente: Elaboración propia

MEDIAS DE CONSUMO DE VIVIENDAS TRADICIONALES - (kWh/m²año) 9.7482 D.E Calefacción Refrigeración kWh/m²año KWh/m³año Consumo por TOTAL 20,25 7,23 27,48 9,50 volumen MEDIAS DE CONSUMO DE VIVIENDAS LOTEOS - (kWh/m²año) 10.119 D.E. Calefacción Refrigeración kWh/m²año KWh/m³año Consumo por **TOTAL** 31,08 62,50 9,38 71,88 volumen

Figura 4. Análisis de consumo de refrigeración y calefacción anual

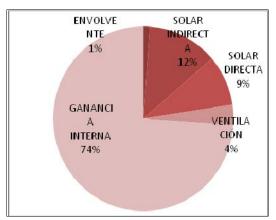
Fuente: Elaboración propia

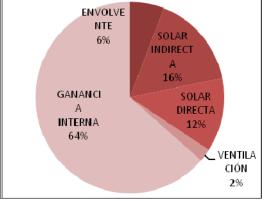

Las viviendas de loteos SERVIU tienen un consumo anual por m² 2,6 veces más alto que el promedio de las viviendas tradicionales (diferencia de 44,4 kWh/m²año), la gran diferencia se encuentra en el consumo por calefacción donde se registra una diferencia de 42,25 kWh/m²año, bastante más trascendente que los 2,15 kWh/m²año de diferencia de consumo por refrigeración. En el caso de los loteos nuevos se produce mayor consumo por calefacción producto del traspaso de calor por la envolvente, situación resuelta de manera más eficiente por las viviendas tradicionales, las que minimizan el flujo de calor (hacia el interior o el exterior) por la mayor capacidad de su envolvente.


En el caso de la refrigeración la diferencia es menor debido a que en los días cálidos la envolvente tiene pérdidas y ganancias según las horas del día y de la misma manera la ventilación natural también enfría y calienta en distintas horas, esto aminora los gastos de aire acondicionado ya que las pérdidas se contrarrestan con las ganancias internas.

Los valores de ganancia interna resultan considerables debido al uso del software ya que se evalúa con personas durante todo el día y durante todos los días del año. Se evalúa de esta manera ya que el objetivo es ver tendencias en el comportamiento térmico de viviendas y su influencia con respecto a la sensación de confort de los habitantes, de esto se desprende que se necesita evaluar las personas dentro del recinto para ver la influencia que ejercen estas ganancias de calor en la sensación de confort y su relación con las otras variables.

Si se analiza la diferencia entre el consumo por unidad de volumen habitable, las viviendas de loteos son 3,27 veces más consumidoras de energía que las viviendas tradicionales, la explicación a esto se da en parte porque las viviendas tradicionales son más altas y el efecto volumen minimiza las pérdidas, este punto será explicado en la hipótesis forma.


Figura 5. Relevancia de variables en pérdida y ganancia de calor anual



Pérdida de calor en viviendas tradicionales

Pérdida de calor en viviendas Loteo

Ganancia de calor en viviendas tradicionales

Ganancia de calor en viviendas Loteo

Fuente: Elaboración propia

4.4 DESARROLLO DE HIPÓTESIS 2 - ORIENTACIÓN

Se analizaron los consumos para el día más frío y el día más caluroso en 4 orientaciones prefijadas más la orientación original y se aplicaron a todas las muestras. Se evaluaron los consumos de HVAC en ambos días y se relacionaron con las ganancias directas, en ambos grupos de estudio.

Una vez encontrado los consumos reales (en kWh/m²) y el consumo más eficiente (orientación con menor consumo) se obtuvo el Índice de Orientación de cada caso (io) que es el cociente de ambos.

En el caso de la ganancia solar para el día más frío se considera óptimo la entrada de calor producto de la radiación solar directa y en el día más cálido se considera óptima la mínima entrada de calor por radiación solar directa.

Figura 6. Análisis de los índices de ganancias y consumos energéticos en los días más calurosos y fríos

Viviendas tradicionales Viviendas loteos	Día más caluroso io consumo 1,071 1,029	io ganancia solar 1,264 1,244
Viviendas tradicionales Viviendas loteos	Día más frío io consumo 1,017 1,030	io ganancia solar 0,702 0,741

Fuente: Elaboración propia

Se puede apreciar que existe una escasa diferencia porcentual entre los io de las viviendas tradicionales y de loteos, en ambos casos. La diferencia mayor se muestra en el día más caluroso en las viviendas tradicionales donde el consumo real es el 7% mayor al de la orientación más eficiente y la menor diferencia también se da en las tradicionales, pero con respecto al día más frío donde la diferencia de consumo solo es el 1,7% mayor.

Se podría especular con que la diferencia de consumos debiera ser mayor, ya que al parecer la orientación debiera tener más importancia en el consumo total (según la mayoría de la bibliografía consultada), pero esta situación se puede explicar por tres razones:

- 1. Los casos analizados en el índice de orientación no corresponden al de mayor consumo con respecto al de menor consumo, sino que al de la orientación real con respecto al de menor consumo.
- 2. Como se explicó anteriormente, se analizaron los consumos con respecto a un uso intenso lo que aumenta la importancia de las ganancias internas en el consumo final con respecto a otras variables, entre ellas la orientación.
- 3. La importancia de la orientación en el consumo radica principalmente en las ganancias por radiación solar directa, variable que influye

aproximadamente en un 40% del día lo que baja la importancia en el consumo con respecto a otras variables que se analizaron las 24 horas.

Con respecto a la radiación solar directa, que depende de la orientación, se obtuvo lo siguiente, las viviendas tradicionales tienen una ganancia de calor un 26% mayor en su orientación real comparada con la más eficiente (menor ganancia en el verano), mientras las viviendas de loteos tienen una diferencia de 24%.

En el día más frío, las tradicionales tienen 30% menos de ganancia solar que la más eficiente (la orientación con más ganancia solar en invierno), mientras que las viviendas de loteos tienen una diferencia de 26%.

En estos resultados se puede apreciar que existe una importante diferencia de ganancias de calor con respecto a las orientaciones, pero entre los grupos analizados no existe una diferencia que permita arrojar una conclusión relevante, ya que la diferencia de las viviendas tradicionales y las de loteos es asimilable al margen de error del estudio.

Se concluye que no se puede definir la veracidad o nulidad de la hipótesis según los resultados obtenidos.

4.5 DESARROLLO DE HIPÓTESIS 3 - INERCIA TÉRMICA

Se diseño una tabla de cálculo para obtener el *coeficiente útil de transmisión de calor de un cerramiento constructivo* y el *índice de consumo por unidad habitable*, que es la relación del Coeficiente Útil con la superficie habitable:

El promedio de los resultados y los índices de variabilidad son los siguientes:

Figura 7. Promedio de los resultados y los índice de variabilidad.

Promedio Coef. Útil transmisión de calor		Promedio Índice consumo por unidad de superficie habitable.		
Tradicionales -Adobe	loteos Nuevos - Otros materiales	Tradicionales -Adobe	loteos Nuevos - Otros materiales	
W/K/m²	W/K/m²	W/K/m²	W/K/m²	
1,04	1,40	3,73	4,32	
I var	I var	I var	I var	
0,46	0,33	0,64	0,45	
D.E.	D.E.	D.E.	D.E.	
0,14	0,14 0,19		0,73	

Fuente: Elaboración propia

En los resultados se puede apreciar que la mayor transmisión de calor se produce en las viviendas de loteos nuevos con un coeficiente de 1,40 W/K/m² en comparación con un 1,04 W/K/m² de las viviendas de adobe, cabe resaltar que este estudio se hizo solo cambiando los valores de transmitancia térmica (u-value) de muros exteriores y paños practicables, los demás cerramientos se dejaron con valores estándar para todos los casos incluso el sistema de techumbre ya que en ambos grupos de análisis predominan las cubiertas de zinc alum.

Los índices de consumo por unidad habitable también fueron a favor de las viviendas tradicionales con un 3,73 W/K/m² en contra de un 4,32 W/K/m² de las viviendas de loteos, los índices de variabilidad y desviación estándar son similares en los dos casos por lo que las muestras son comparables.

La hipótesis es aprobada ya que las soluciones de viviendas de muros exteriores de adobe (entendiéndose la transmitancia del cerramiento y las dimensiones tradicionales de las envolventes de estos tipos de viviendas) producen una menor pérdida de calor que las envolventes de las viviendas de loteos tradicionales, en todos estos casos no se considera la variable orientación ni perdida por radiación, ventilación, uso, puentes térmicos, etc.

4.6 DESARROLLO DE HIPÓTESIS 4 - FORMA

Se trabajó con el concepto del efecto volumen, midiendo el factor V/P (Volumen/Perímetro expuesto), según la bibliografía consultada (véase Olgyay, 1963) si el factor V/P es mayor significa que una envolvente es capaz de acoger un mayor volumen con un menor perímetro expuesto, esto repercute en una disminución de los impactos ambientales en zonas de condiciones extremas (zonas frías o áridas).

El promedio del índice de formaV/P en cada caso fue el siguiente:

Viviendas tradicionales = 6,25Viviendas loteos = 3,33

Para ratificar si existe relación entre consumos e índice de forma (V/P) se procedió a elaborar gráficos de puntos y encontrar el coeficiente de determinación.

Se aprecia que los valores de relación no muestran un patrón de conducta, en el caso de las viviendas tradicionales la relación de forma y consumo por unidad habitable es prácticamente nula, pero crece cuando se relaciona a los consumos anuales de calefacción y refrigeración y vuelve a caer cuando se relacionan los días más extremos

En las viviendas de loteos las relaciones son más estrechas y consumo con forma tienen una relación lineal, en especial cuando se refiere a calefacción. Esto puede significar que la forma está relacionada al poco eficiente consumo de las viviendas de loteos.

	R ² FV/P v/s consumo	R ² FV/P v/s consumo calefacción	R ² FV/P v/s consumo refrigeración	R ² FV/P v/s consumo día más Frio	R ² FV/P v/s consumo día más Cálido	R ² FV/P v/s índice consumo
Viviendas tradicionales	0,001	0,15	0,14	0,0003	0,003	0,34
Viviendas loteos SERVIU	0.83	0,79	7E-06	0,53	0,53	0,18

Figura 8. Promedio de los resultados y los índice de variabilidad.

Fuente: Elaboración propia

A la luz de los resultados no se puede aprobar la hipótesis 4 aunque no se refuta que la forma incida en el alto consumo de las viviendas de loteos

Existe una relación directa entre *índice de vanos* (superficie de vanos /superficie habitable) en relación al "consumo real" por unidad habitable (kWh/m²), en ambos casos (tradicionales y viviendas de loteos) el coeficiente de determinación (R²) es 1, lo que significa que la relación es completamente lineal, si se relaciona el índice vanos al consumo real (kWh) las viviendas tradicionales tienen un R² = 0,30 y las viviendas de loteos un R²=0,34. Estos valores muestran la estrecha relación entre consumo y superficie de vanos vidriados en donde el índice de vanos en las viviendas de loteos es 3,14 veces mayor al de las viviendas tradicionales.

Índice de vanos promedios:

Viviendas tradicionales 0,07 Viviendas Loteos 0,22

Las superficies de vanos están directamente relacionadas a las condicionantes constructivas de las soluciones de cada grupo de viviendas, es por esta razón que forma – vanos y consumos se relacionan directamente y se puede extrapolar que los consumos dependen de estas variables.

5. CONCLUSIONES GENERALES

La investigación se centró en comparar datos de consumo y relaciones entre variables que lo afectan entre dos grupos diferenciados de viviendas, pero es importante no perder el horizonte general para poder complementar esta investigación con otras que ayuden a generar un marco teórico que permita incentivar planes de gobierno que se orienten hacia la valorización del entorno construido de los pueblos rurales en el país, entendiendo no solo el aspecto patrimonial del pueblo como conjunto (ya que a

menudo se le otorga solo a algunas construcciones como iglesias o estaciones de ferrocarriles), sino también a la manera como estas construcciones significan un aporte medioambiental, ya sea por el consumo y traslado de materiales, reutilización de estos, capacidad de autoconstrucción, descentralización de la economía y también el ahorro en consumo por calefacción y refrigeración.

Poder aunar estas virtudes en datos sólidos permitiría generar una base que apoye la revisión de temas normativos y de conductas reiterativas que llevan a la desaparición de materiales autóctonos, dando paso a una pérdida irrevocable de enseñanzas y costumbres tradicionales aprendidas a través de los años y que generaban una simbiosis entre lugar y asentamiento.

Los terremotos, la globalización, la conducta de jerarquización social asociada al ambiente construido, la idea de la mínima mantención, etc. se han coludido en nuestro país en contra de materiales tradicionales y llevado a la comunidad (y al Estado) a tomar soluciones precipitadas que incluso rallan en la desidia, ya que el statu quo imperante solo significará la pérdida de una oportunidad de volver a relacionarse de una manera inteligente y adecuada con el entorno, el clima y las posibilidades de sustentabilidad de los asentamientos tradicionales.

Los datos de la investigación muestran claramente que las viviendas tradicionales tienen consumos por unidad habitable muy inferiores a las viviendas de loteos impulsadas por el SERVIU, y es la materialidad de la envolvente la que posibilita un ahorro más directo del consumo por calefacción, ya que la mayor inercia térmica de los cerramientos de barro permite un control más adecuado de la temperatura interior, además la forma estructural propia de estas soluciones constructivas se evidencia en la ejecución de vanos más pequeños , lo que se traduce en una superficie menor de inercia baja (paños vidriados) y menores ganancias de calor en el verano.

Se propone complementar este estudio con la medición de la importancia en el consumo energético de los factores de control solar como arboledas, parrones y espacios intermedios, que aparte de significar un ahorro energético aportan una visión de cómo relacionarse con el entorno y de generar un vínculo social del que carecen las viviendas sociales, incluso el diseño de la urbanización de los loteos podría incluir (de una manera más efectiva) estos elementos que ayudan al arraigo entre habitante y lugar.

6. REFERENCIAS BIBLIOGRÁFICAS

OLGYAY, Victor. Design with climate Princeton: Princeton University Press. 1963.

BAKER, Nick; STEEMERS, Koen. *Energy and environment in architecture* Londres: E & FN Spon. 2000.

THERMIE PROGRAM OF THE EC DGXVIII. A green Vitruvius. Principles and practice of sustainable architectural design, Owen, J (ed.) Londres: James & James. 1999.

D'ALENCON, Renato. Acondicionamientos, arquitectura y técnica. Santiago: Ediciones ARQ. 2008.

GARZÓN, Beatriz. Arquitectura bioclimática Buenos Aires: Nobuko. 2007.

SARMIENTO, Pedro. La energía solar en arquitectura y construcción Santiago: Ril Editores. 2007.

MALDONADO, Luis; RIVERA, David; VELA, Fernando. Arquitectura y construcción con tierra, tradición e innovación Madrid: Mairea. 2002.

MINKE, Gernot. Manual de construcción en tierra Montevideo: Editorial Nordan-Comunidad. 2001.