Influence of the cracking moment of two reinforced concrete beams obtained through fiber optic sensors in the determination of their instant deflections = Influencia del momento de fisuración de dos vigas de hormigón armado obtenido mediante sensores de fibra óptica en la determinación de sus flechas instantáneas

Autores/as

  • Julián García Díaz School of Building Engineering Universidad Politécnica de Madrid

DOI:

https://doi.org/10.20868/bma.2020.1.4662

Palabras clave:

Fiber optic sensors embedded in concrete, Displacement transducer, cracking, deflection, Fiber Bragg Grating, Monitoring, Sensores de fibra óptica embebidos en hormigón, Transductor de desplazamiento, fisuración, flecha, Red de Bragg, Monitorización

Resumen

Abstract

This article investigates the measurement of the real instantaneous deflection using a displacement transducer, and with fiber optic sensors embedded and welded to the corrugated rebars in order to determine the real cracking moment of the concrete. Two reinforced concrete beams simply resting on the support with point loading in the center of the span have been tested, at which point the maximum deflection is reached. Both the sensors and the displacement transducer have been placed in the center of the span. Different loading steps have been applied to the beams, using a loading cylinder, and the measurement of the load applied has been determined using a loading cell. During the loading process of the beams, the real moment at which they cracked has been determined, and which determines the change from the gross inertia to the cracked inertia in the study of the deflections. Two expressions have been deduced that modify the formula of the instantaneous deflection and demonstrate that they are valid to determine in a much more precise way the instantaneous deflections on simply resting on the support concrete beams. Future lines of research will concentrate on studying the instantaneous deflections of more complex beams, and thus obtain expressions that more closely approximate their actual behaviour.

Resumen

Este artículo investiga la medida de la flecha instantánea real mediante un transductor de desplazamiento, y con sensores de fibra óptica embebidos y soldados a las barras de acero corrugado con el objeto de determinar el momento de fisuración real del hormigón. Se han ensayado dos vigas de hormigón armado simplemente apoyadas con carga puntual en el centro del vano, punto en el que se alcanza la máxima flecha. Tanto los sensores como el transductor de desplazamiento se han colocado en el centro del vano. Se han sometido a las vigas a diferentes escalones de carga, mediante un cilindro de carga, y las medidas de las cargas aplicadas se han recogido mediante una célula de carga. Durante el proceso de carga de las vigas se ha determinado el momento real en el que fisuran, y que determina el cambio de la inercia bruta a la inercia fisurada en el estudio de las flechas. Se han deducido dos expresiones que modifican la fórmula de la flecha instantánea, y que demuestran que son válidas para determinar de una manera mucho más precisa las flechas instantáneas de vigas de hormigón simplemente apoyadas. Futuras líneas de investigación se centrarán en estudiar las flechas instantáneas de vigas más complejas, y obtener así expresiones que acerquen de una manera más precisa su comportamiento real.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

J. García Díaz, N. Navarro Cano, and E. Rúa Álvarez, “Determination of the Real Cracking Moment of Two Reinforced Concrete Beams Through the Use of Embedded Fiber Optic Sensors,” Sensors (Basel)., vol. 20, no. 3, 2020, doi: 10.3390/s20030937.

J. García Díaz, N. Navarro Cano, and E. Rúa Álvares, “Análisis de resultados de deformaciones y flechas en dos vigas de hormigón armado monitorizadas con sensores de fibra óptica embebidos = Analysis of deformation and deflection results in two reinforced concrete beams monitored with embedded fibre optic se,” An. Edif. Vol. 5, Núm. 3 Septiembre - Diciembre 2019DO - 10.20868/ade.2019.4367 , Dec. 2019.

E. Hover, S. Psomas, and C. Eddie, “Estimating crack widths in steel fibre-reinforced concrete,” Proceedings of the Institution of Civil Engineers - Construction Materials, vol. 170, no. 3. pp. 141–152, 2017, doi: 10.1680/jcoma.15.00019.

T. Jiao, Z. Zhou, and H. Xiao, “Investigation into coaxial cable Fabry–Perot interferometers for strain measurement and crack detection in RC structures,” Measurement, vol. 147, p. 106873, 2019, doi: https://doi.org/10.1016/j.measurement.2019.106873.

K. (Wenhai) Li and M. Gaudet, “High Spatial Resolution Crack Monitoring in Concrete Structures Using a Distributed Fiber Optic Sensor,” J. Nucl. Eng. Radiat. Sci., vol. 6, no. 1, Nov. 2019, doi: 10.1115/1.4045124.

Y. Yao, S. Li, Z. Li, S. Li, and Z. Li, “Structural Cracks Detection Based on Distrib-uted Weak FBG,” in 26th International Conference on Optical Fiber Sensors, 2018, p. TuE95, doi: 10.1364/OFS.2018.TuE95.

J. Yan et al., “Concrete Crack Detection and Monitoring Using a Capacitive Dense Sensor Array,” Sensors, vol. 19, no. 8, p. 1843, 2019, doi: 10.3390/s19081843.

D. Yang, J. Wang, D. Li, and K. S. C. Kuang, “Fatigue crack monitoring using plastic optical fibre sensor,” Procedia Struct. Integr., vol. 5, pp. 1168–1175, 2017, doi: https://doi.org/10.1016/j.prostr.2017.07.029.

D. Luo et al., “Concrete beam crack detection using tapered polymer optical fiber sensors,” Measurement, vol. 88, pp. 96–103, 2016, doi: https://doi.org/10.1016/j.measurement.2016.03.028.

M. Maheshwari, V. G. M. Annamdas, J. H. L. Pang, A. Asundi, and S. C. Tjin, “Crack monitoring using multiple smart materials; fiber-optic sensors & piezo sensors,” Int. J. Smart Nano Mater., vol. 8, no. 1, pp. 41–55, Jan. 2017, doi: 10.1080/19475411.2017.1298220.

J. Mao, F. Xu, Q. Gao, S. Liu, W. Jin, and Y. Xu, “A Monitoring Method Based on FBG for Concrete Corrosion Cracking,” Sensors, vol. 16, no. 7, p. 1093, Jul. 2016, doi: 10.3390/s16071093.

J. Ouyang, X. Chen, Z. Huangfu, C. Lu, D. Huang, and Y. Li, “Application of dis-tributed temperature sensing for cracking control of mass concrete,” Constr. Build. Mater., vol. 197, pp. 778–791, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2018.11.221.

Q. Zhang, Y. Wang, Y. Sun, L. Gao, and Y. Yue, “Hilbert–Huang Transform based method for monitoring the crack of concrete arch by using FBG sensors,” Optik (Stuttg)., vol. 127, no. 6, pp. 3417–3422, 2016, doi: https://doi.org/10.1016/j.ijleo.2015.12.087.

L. Wang, X. Xin, J. Song, H. Wang, and Y. Sai, “Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete,” Opt. Eng., vol. 57, no. 2, pp. 1–6, Feb. 2018, doi: 10.1117/1.OE.57.2.027103.

L. Wang, J. Song, Y. Sai, and H. Wang, “Crack Width Analysis of Reinforced Concrete Using FBG Sensor,” IEEE Photonics J., vol. 11, no. 1, pp. 1–8, 2019, doi: 10.1109/JPHOT.2019.2891267.

T. Jiang, Y. Hong, J. Zheng, L. Wang, and H. Gu, “Crack Detection of FRP-Reinforced Concrete Beam Using Embedded Piezoceramic Smart Aggregates,” Sen-sors, vol. 19, no. 9, p. 1979, 2019, doi: 10.3390/s19091979.

C. Wu, K. Sun, Y. Xu, S. Zhang, X. Huang, and S. Zeng, “Concrete crack detection method based on optical fiber sensing network and microbending principle,” Saf. Sci., vol. 117, pp. 299–304, 2019, doi: 10.1016/J.SSCI.2019.04.020.

J. Chakraborty, A. Katunin, P. Klikowicz, and M. Salamak, “Early Crack Detection of Reinforced Concrete Structure Using Embedded Sensors,” Sensors, vol. 19, no. 18, p. 3879, 2019, doi: 10.3390/s19183879.

C. V. Dung and L. D. Anh, “Autonomous concrete crack detection using deep fully convolutional neural network,” Autom. Constr., vol. 99, pp. 52–58, Mar. 2019, doi: 10.1016/J.AUTCON.2018.11.028.

M. Gkantou, M. Muradov, G. S. Kamaris, K. Hashim, W. Atherton, and P. Kot, “Novel electromagnetic sensors embedded in reinforced concrete beams for crack detection,” Sensors (Switzerland), vol. 19, no. 23, p. 5175, Nov. 2019, doi: 10.3390/s19235175.

B. Goszczyńska, G. Świt, W. Trąmpczyński, A. Krampikowska, J. Tworzewska, and P. Tworzewski, “Experimental validation of concrete crack identification and location with acoustic emission method,” Arch. Civ. Mech. Eng., vol. 12, no. 1, pp. 23–28, 2012, doi: https://doi.org/10.1016/j.acme.2012.03.004.

M. M. M. Islam and J.-M. Kim, “Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network,” Sen-sors, vol. 19, no. 19, p. 4251, 2019, doi: 10.3390/s19194251.

K. S. C. Kuang, Akmaluddin, W. J. Cantwell, and C. Thomas, “Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors,” Meas. Sci. Technol., vol. 14, no. 2, pp. 205–216, Feb. 2003, doi: 10.1088/0957-0233/14/2/308.

K. Ohno, “Crack classification in concrete based on acoustic emission,” Constr. Build. Mater., vol. 24, no. 12, pp. 2339–2346, 2010, doi: 10.1016/J.CONBUILDMAT.2010.05.004.

A. Wosniok et al., “Static load monitoring of a concrete bridge using a high-precision distributed fiber optic sensor system,” in SMAR 2019 - Proceedings, 2019, pp. 1–8.

Z. Chen, D. Zheng, J. Shen, J. Qiu, and Y. Liu, “Research on distributed optical-fiber monitoring of biaxial-bending structural deformations,” Measurement, vol. 140, pp. 462–471, Jul. 2019, doi: 10.1016/J.MEASUREMENT.2019.04.031.

M. M. M. and G. M. F., “Fiber Optic Sensors and Digital Image Correlation for Measuring Deformations in Reinforced Concrete Beams,” J. Bridg. Eng., vol. 23, no. 3, p. 4017144, Mar. 2018, doi: 10.1061/(ASCE)BE.1943-5592.0001189.

T. Bao, J. Li, X. Zhu, and C. Gu, “Analysis of strain transfer between surface-bonded plastic optical fibers and concrete,” Opt. Eng., vol. 58, no. 2, pp. 1–8, Feb. 2019, doi: 10.1117/1.OE.58.2.027107.

F. Gao, H. Zhou, H. Liang, S. Weng, and H. Zhu, “Structural deformation moni-toring and numerical simulation of a supertall building during construction stage,” Eng. Struct., vol. 209, p. 110033, 2020, doi: https://doi.org/10.1016/j.engstruct.2019.110033.

D. Xu, J. Yin, and H. Liu, “A new measurement approach for deflection monitor-ing of large-scale bored piles using distributed fiber sensing technology,” Measure-ment, vol. 117, pp. 444–454, 2018, doi: https://doi.org/10.1016/j.measurement.2017.12.032.

W. Hong, K. Lv, B. Li, Y. Jiang, X. Hu, and Q. Qu, “Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors,” Smart Mater. Struct., vol. 26, no. 10, p. 105023, Oct. 2017, doi: 10.1088/1361-665X/aa87d7.

J. S. Bajić, M. Z. Marković, A. Joža, D. D. Vasić, and T. Ninkov, “Design calibra-tion and characterization of a robust low-cost fiber-optic 2D deflection sensor,”

Descargas

Publicado

2020-04-30

Cómo citar

Influence of the cracking moment of two reinforced concrete beams obtained through fiber optic sensors in the determination of their instant deflections = Influencia del momento de fisuración de dos vigas de hormigón armado obtenido mediante sensores de fibra óptica en la determinación de sus flechas instantáneas. (2020). Building & Management, 4(1), 7-20. https://doi.org/10.20868/bma.2020.1.4662