Control strategies, monitoring and management for the efficient behavior of Thermally Activated Building Systems = Estrategias de control, monitorización y gestión para el comportamiento eficiente de las estructuras termoactivas

Rossana Laera, Inmaculada Martínez Pérez, Luis de Pereda Fernández, Ricardo Tendero Caballero, Rafael Tejedor López, Francesco Iannone


doi:10.20868/bma.2019.1.3873

Full Text: PDF

Abstract


Abstract

Thermally Activated Building Systems (TABS) play an essential part in the thermal response of buildings, in terms of dynamic adaptation and energy storage, enabling the separation between thermal energy generation and use. TABS can operate with low temperature, allowing the efficient utilization of renewable energy. Their thermal capacity needs to be managed by a control system, shifting TABS operation to time periods when energy production is most efficient and cost-effective. In this paper, a review of the operation strategies adopted for TABS is provided, in their specific integration in an existing office building in Madrid (Spain). The present control strategies are part of an integrated process, including the design phase, commissioning of TABS, monitoring, and optimization during operation. The effort to take advantage of the energy potential of the original structure, in combination with constant follow-up and management, puts the building on track to achieve a LEED Platinum rating. In line with the standards pursued by the LEED Rating System, a systematic audit procedure is conducted, aiming at the optimization of TABS energy performance, with the identification of energy waste and execution of corrective operations for the improvement of thermal comfort for the occupants.

Resumen

Los sistemas termoactivos juegan un papel importante en la respuesta térmica de los edificios, en términos de adaptación dinámica y almacenamiento de energía, generando un desfase entre la generación de energía térmica y su utilización. Las estructuras termoactivas pueden funcionar con bajas temperaturas, permitiendo el uso eficiente de energía renovable. Su capacidad térmica necesita ser gestionada por un sistema de control, que traslada la operación de las estructuras termoactivas a períodos en los que la producción de energía resulta más eficiente y rentable. En este artículo se proporciona un estudio de las estrategias operativas adoptadas para estructuras termoactivas, en su integración concreta en un edificio de oficinas existente en Madrid (España). Dichas estrategias de control forman parte de un proceso integrado que incluye la fase de diseño, la puesta en marcha, la monitorización, y la optimización del rendimiento de las estructuras termoactivas durante su explotación. El esfuerzo de aprovechar el potencial energético de la estructura original, en combinación con su constante seguimiento y gestión, hace que el edificio esté en el camino de lograr la certificación LEED Platino. En línea con los objetivos perseguidos por el sistema de certificación LEED, se aplica un procedimiento de auditoria especifico destinado a la optimización del comportamiento energético de los sistemas termoactivos, a través de la identificación de gastos de energía innecesarios y la ejecución de acciones correctivas para la mejora del confort térmico de los ocupantes.


Keywords


Thermally Activated Building Systems (TABS); Thermal inertia; Renewable Energy Sources (RES); Building Management Systems (BMS); LEED Rating System; Energy Efficiency; Thermal Comfort; Estructuras termoactivas; Inercia térmica; Fuentes de energía renovable; Sistemas de Gestión de Edificios, LEED Rating System; Eficiencia Energética; Confort Térmico

References


L. de Pereda Fernandéz, “Integración de sistemas termoactivos para eficiencia. Principios y casos, in: Guia sobre estructuras termoactivas y sistemas inerciales en la climatización de edificios”, Capítulo 5, pp. 107–145, Madrid 2014.

C.A. Balaras, “The role of thermal mass on the cooling load of buildings. An overview of computational methods”, Energy and Buildings 24, pp. 1-10, 1996.

M. Schmelas, T. Feldmann, E. Bollin, “Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study”, Applied Energy 199, pp. 294–309, 2017.

E. Velasco Gómez, M. Andrés Chicote, F.J. Rey Martínez, A. Tejero González, “Thermal behaviour of an active slab: experimental study for TABs applications”, 9th International Conference on Applied Energy, ICAE2017, 21-24 August 2017, Cardiff, UK, Energy Procedia 142 pp. 3326-3331, 2017.

A. Mirakhorli, B. Dong, “Occupancy behavior based model predictive control for building indoor climate. A critical review”, Energy and Buildings., vol. 129, pp. 499–513, 2016.

I.C. Figueroa, J. Cigler, L. Helsen, “Model predictive control formulation: a review with focus on hybrid GEOTABS buildings”, in: REHVA Annual Meeting Conference Low Carbon Technologies in HVAC, Belgium, April 23, 2018.

J. Roman’i, A. de Gracia, L.F. Cabeza, “Simulation and control of thermally activated building systems (TABS)”, Energy and Buildings, vol. 127, pp. 22–42, 2016.

Tague, R. Nancy, "Plan–Do–Study–Act cycle". The quality toolbox (2nd ed.). Milwaukee: ASQ Quality Press. pp. 390–392, 2005. ISBN 978-0873896399. OCLC 57251077.

R.A. Meierhans, “Room air conditioning by means of overnight cooling of the concrete ceiling”, ASHRAE Trans V 1996, vol. 102(1), pp. 693–7 (AT-96-08-2), 1996.

B.W. Olesen, “Radiant floor heating in theory and practice”, ASHRAE J;44 (7):19, 2002.

J. Lim, Y.Y. Kim, M.S. Yeo, K.I. Kwang-Woo, “A comparative study on the control of the radiant floor cooling system”, in: 7th REHVAWorld Congress and Clima; 2000.

M. Gwerder, J. Todtli, B. Lehmann, F. Renggli, V. Dorer, “Control of Thermally Activated Building Systems”, Proceedings of Clima 2007 WellBeing Indoors, 2007.

G.P. Henze, C. Felsmann, D.E. Kalz, S. Herkel, “Primary energy and comfort performance of ventilation assisted thermo-active building systems in continental climates”. Energy and Buildings vol. 40(2), pp. 99–111, 2008.

B.W. Olesen, F.C. Dossi, “Operation and control of activated slab heating and cooling systems”. In: CIB world building congress; 2004.

Boeing; et al. (2014), "LEED-ND and Livability Revisited", Berkeley Planning Journal, 27, pp. 31–55, Archived from the original on 2015-04-02, Retrieved 2015-04-15.

U.S. Green Building Council, “Green Building Operations and Maintenance”, LEED Reference Guide for Green Building Operations and Maintenance, For the Operations and Maintenance of Commercial and Institutional Buildings, 2009 Edition (Updated April 2010).

J.H. Lim, J.H. Song, S.Y. Song, “Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics”, Applied Energy, vol. 126, pp.123–35, 2014.

J. Tödtli, M. Gwerder, B. Lehman, F. Renggli, V. Dorer, “TABS-control: Steuerung und regelung von thermoaktiven bauteilsystemem. Faktor Verlag Zurich,Switzerland 2009. ISBN: 978-3-905711-05-9.

V. Gavan, A. Perehinec, S. Agapoff, S. Derouineau, “Rule based Fault & Diagnosis for high performance buildings: application to a positive Energy and Buildingsing in France”, 12th REHVA World Congress – CLIMA 2016, Aalborg, Denmark, May 2016.

S. García Garrido, (1991, May 10). “Mantenimiento conductivo” [Online]. Available: http://mantenimiento.renovetec.com/

L. de Pereda Fernández, “Type of action to improve energy efficiency in the full renovation of a small palace protected Administration office in Madrid. Geothermal and thermoactive structures”, Anales de Edificación Vol. 1, Nº 2, 1-9, 2015. ISSN: 2444-1309. Doi: 10.20868/ade.2015.3099.

ASHRAE Standard 55-2004, “Thermal Comfort Conditions for Human Occupancy”, January 24, 2004.

IDAE, “Guía de mantenimiento Instalaciones Térmicas”, Gobierno de España, Ministerio de industria, turismo y comercio, Ahorro y Eficiencia Energética en Climatización, p. 130 Madrid February 2007.

I.C. Figueroa, J. Cigler, L. Helsen, “Model Predictive control formulation: a review with focus on hybrid geotabs buildings”, Proceedings of the REHVA Annual Meeting Conference Low Carbon Technologies in HVAC, Brussels, 23 April 2018.

J. Pfafferott, K. Doreen, R. Koenigsdorff, “Bauteilaktivierung: Einsatz – Praxiserfahrungen – Anforderungen”, Stuttgart: Fraunhofer IRB Verlag, 2015.

B. Lehmann, V. Dorer, M. Gwerder, F. Renggli, J. Tödtli, “Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system”, Applied Energy 88, pp. 180-191, 2011.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Autor / BY-NC-ND

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.