Evaluación de la capacidad de resistencia al fuego de una estructura de hormigón armado tras un terremoto = Post-earthquake fire capacity assesment of a reinforced concrete frame

Ismail Haouach, Belkacem Lamri, Abdelhak Kada


DOI: https://doi.org/10.20868/ade.2022.5097

Texto completo:

PDF (English)

Resumen


Un terremoto es uno de los peligros más desastrosos que puede sufrir un edificio. Puede ir seguido de incendios, cuyos efectos pueden ser mayores que los del propio seísmo en las zonas urbanas. Las normas de construcción actuales no tienen en cuenta esta doble acción, que actúa de forma secuencial y descuida la probabilidad de que se produzcan incendios después de un terremoto. Los edificios no están suficientemente diseñados para este tipo de acciones que pueden conducir al colapso. El objetivo de este artículo es presentar una evaluación de la capacidad de resistencia al fuego tras un terremoto (PEF) de un armazón de hormigón armado que se ha seleccionado de un edificio, diseñado de acuerdo con los códigos de diseño de edificios de Argelia. Se realiza un análisis sísmico no lineal del armazón para evaluar su capacidad portante frente al efecto del terremoto. El armazón dañado se someterá a altas temperaturas debidas al fuego y se analizará numéricamente mediante el software ANSYS APDL, incluyendo las no linealidades geométricas y de materiales. Los resultados muestran que cuando una estructura, previamente dañada por la acción sísmica, se expone a un incendio posterior al terremoto, su vulnerabilidad se ve influida en comparación con la de la estructura expuesta únicamente al fuego. Se discute el modo de colapso global o local de la estructura sometida a un incendio post-terremoto o a un incendio solo.

Abstract

Earthquake is one of the most disastrous hazards that a building can suffer. It can be followed by fires, the effects of which may be greater than those of the earthquake itself in urban areas. The current building standards do not take this double action into account, which acts in a sequential manner and neglects the probability of fires occurring after an earthquake. Buildings are not sufficiently designed for such actions which can lead to collapse. The aim of this article is to present an assessment of the post-earthquake fire (PEF) capacity of a reinforced concrete frame that has been selected from a building, designed according to Algerian building design codes. A non-linear seismic analysis of the frame is carried out in order to assess its bearing capacity against the effect of the earthquake. The damaged frame will be subjected to high temperatures due to fire and numerically analysed using ANSYS APDL software including material and geometric nonlinearities. The results show that when a structure, previously damaged by seismic action, is exposed to a post-earthquake fire, its vulnerability is influenced compared to that of the structure exposed to fire alone. The mode of global or local collapse of the structure subjected to post-earthquake fire or to fire alone is discussed.


Palabras clave


Estructura de CR; incendio post-terremoto; modelización numérica; análisis no lineal; RPA99v2003; RC frame; post-earthquake fire; Numerical modelling; non-linear analysis; RPA99v2003

Referencias


ASTM, Standard methods of fire test of building construction and materials, in E 119–08a. 2008: West Conshohocken, Pa. ANSYS, Academic Academic Research. 2015, ANSYS Help Documentation: Canonsburg.

B.Behnam, Post-earthquake fire analysis in urban structures:Risk management strategies. 2017: CRC Press.

B.Behnam,H.R. Ronagh, Post-earthquake fire performance-based behavior of reinforced concrete structures. Earthq.Struct. 2013. 5(4): p. 379-394.

B.Behnam, H.R. Ronagh,H. Baji, Methodology forinvestigating the behavior of reinforced concrete structuressubjected to post earthquake fire. Adv. Concr. Constr. 2013.1(1): p. 29.

B.Behnam,H. Reza Ronagh, A study on the effect of sequentialpost-earthquake fire on the performance of reinforcedconcrete structures. Int. J. Struct. Integr. 2014. 5(2): p. 141-166.

CEN, EN 1998-1-1 , Design of Structures for Earthquake Resistance: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium. 2004.

CEN, EN 1992-1-2 , Design of Concrete Structures, General Rules, Structural Fire Design, European Committee for Standardization, Brussels, Belgium. 2004.

CEN, EN 1994-1-2 , Design of composite steel and concrete structures, General rules, Structural fire design, European Committee for Standardization, Brussels, Belgium 2005.

M. Dwaikat,V. Kodur, Response of restrained concrete beams under design fire exposure. J. Struct. Eng. 2009. 135(11): p. 1408-1417.

I.Džolev, M. Cvetkovska, Đ. Lađinović,V. Radonjanin, Numerical analysis on the behaviour of reinforced concrete frame structures in fire. Comput. Concr. 2018. 21(6): p. 637-647.

A.S. Elnashai, Advanced inelastic static (pushover) analysis for earthquake applications. Structural engineering and mechanics, 2001. 12(1): p. 51-70.

P.Fajfar, A nonlinear analysis method for performance-basedseismic design. Earthq. Spectra. 2000. 16(3): p. 573-592.

FEMA356, Prestandard and commentary for the seismic rehabilitation of buildings rehabilitation requirements 2000, American Society of Civil Engineers: Washington, DC.A. Afram and F. Janabi-Sharifi, ‘Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods’, Energy Build., vol. 94, pp. 121–149, 2015, doi: 10.1016/j.enbuild.2015.02.045.

W.Gao, J.-G. Dai, J. Teng,G. Chen, Finite element modelingof reinforced concrete beams exposed to fire. Eng. Struct.2013. 52: p. 488-501.

I.Haouach, B. Lamri,A. Kada, Numerical evaluation of theperformance of a reinforced concrete frame subjected tofire, in International Conference on Geotechnical, Structuraland Advanced Materials Engineering (ICGSAME 2021).2021: Biskra- Algeria.

I.Haouach, B. Lamri,A. Kada, Evaluation de la réponsethermique d'un portique en béton armé soumis à unincendie, in 2nd International Symposium on ConstructionManagement and Civil Engineering (ISCMCE- 2021).2021: Skikda.

International Standard, Fire resistance tests, ISO 834-1, in Test conditions, Provided by IHS under license with ISO: 31. 1999: Genéve.

A.Kada,B. Lamri, Numerical analysis of non-restrained long-span steel beams at high temperatures due to fire. Asian J.Civ. Eng. 2019. 20(2): p. 261-267.

F.Pires, Influência das paredes de alvenaria no comportamentode estruturas reticuladas de betão armado sujeitas a acçõeshorizontais, in LNEC. 1990: Lisbon, Portugal.

CBA, Règles de Conception et de Calcul des Structures en Béton Armé. 1993, Centre National De Recherche Appliquée En Génie Parasismique.

RPA99v2003, Règles Parasismiques Algériennes 99 version 2003. 2003, Centre National De Recherche Appliquée En Génie Parasismique: Algeria.

U. Schneider, Concrete at high temperatures—a general review.Fire Saf. J. 1988. 13(1): p. 55-68.

H.Vitorino, H. Rodrigues,C. Couto, Evaluation of post-earthquake fire capacity of reinforced concrete elements.Soil Dyn. Earthq. Eng. 2020. 128: p. 105900.

A.J. Wolanski, Flexural behavior of reinforced and prestressed concrete beams using finite element analysis. 2004, Citeseer.




Copyright (c) 2023 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.