Una nueva estrategia integral para modelar materiales urbanos para ciudades térmicamente habitables. Un caso de estudio en Madrid = A new integrated strategy for modelling urban materials for thermally liveable cities. A case study in Madrid

Emanuela Giancola, Helena López, Silvia Soutullo, M. Nuria Sánchez, Luis F. Zarzalejo, Ana Gamarra, Israel Herrera, J. Antonio Ferrer, Emanuele Naboni


DOI: https://doi.org/10.20868/ade.2022.5096

Texto completo:

PDF (English)

Resumen


Desde el punto de vista térmico, el uso de materiales multifuncionales e innovadores en las superficies urbanas puede proporcionar mejoras radicales y reducir el efecto de Isla de Calor Urbana. En la simulación energética de edificios se ha prestado poca atención a las interacciones, no despreciables, entre la envolvente exterior de los edificios, la demanda energética y su impacto en el microclima urbano. Las herramientas actuales de simulación de edificios tienen una capacidad limitada para evaluar estas interrelaciones. Por estas razones, es necesario crear flujos de trabajo basados en simulaciones ad-hoc capaces de evaluar la influencia de los materiales y sus impactos en ambientes exteriores e interiores. Este artículo muestra la estrategia de simulación que se utilizará en un proyecto de investigación nacional cuyo objetivo es validar la viabilidad del uso de materiales urbanos optimizados, mediante simulación. Para ello se utilizará un innovador flujo de trabajo racionalizado basado en la herramienta Grasshopper.

Abstract

From a thermal point of view, the use of multifunctional and innovative materials in urban surfaces can provide radical improvements and reduce the Urban Heat Island effect. In building energy simulation, little attention has been paid to the non-negligible interactions between the external building envelope, energy demand and its impact on the urban microclimate. Current building simulation tools are limited in their ability to assess these interrelationships. For these reasons, it is necessary to create workflows based on ad-hoc simulations capable of assessing the influence of materials and their impacts on outdoor and indoor environments. This article shows the simulation strategy to be used in a national research project aiming to validate the feasibility of using optimised urban materials through simulation. An innovative streamlined workflow based on the Grasshopper tool will be used for this purpose.


Palabras clave


Diseño Paramétrico; Herramienta de Simulación Exterior; Materiales urbanos optimizados; Isla de Calor Urbana; Cambio Climático; Parametric Design; Exterior Simulation Tool; Optimised Urban Materials; Urban Heat Island; Climate Change

Referencias


H.Akbari, C. Cartalis, D. Kolokotsa, A. Muscio, A. Pisello, F.Rossi, M. Santamouris, A. Synnefa, N. Wong, M. Zinzi,Local climate change and urban heat island mitigationtechniques – the state of the art, J. Civil. Eng. Manag. 22(2016) 1–16.https://doi.org/10.3846/13923730.2015.1111934

B.Bueno, L. Norford, J. Hidalgo, G. Pigeon, The urban weathergenerator, J. Build. Perform. Simul. 6 (4) (2013) 269–281doi:10.1080/19401493.2012.718797

S.Croce, D. Vettorato, Urban surface uses for climate resilientand sustainable cities: A catalogue of solutions, SustainableCities and Society 75 (2021) 103313.https://doi.org/10.1016/j.scs.2021.103313

Dragonfly, (n.d.). https://github.com/chriswmackey/Dragonfly (accessed 28 February 2022)

DOE, EnergyPlus Energy Simulation Software 2017. https://energyplus.net (accessed 28 February 2022).

Gobierno de España. Código Técnico de la Edificación (CTE). Real Decreto 314/2006 (2006). BOE-A-2006-5515.

Ladybug and Honeybee. http://www.grasshopper3d.com/group/ladybug (accessed 28 February 2022)

R.C.G.M. Loonen, F. Favoino, J.L.M. Hensen, M. Overend,Review of current status, requirements and opportunities forbuilding performance simulation of adaptive facades, Journal of Building Performance Simulation 10 (2017) 205-223.https://doi.org/10.1080/19401493.2016.1152303

D.Mauree, S. Coccolo, A. Perera, V. Nik, J.L. Scartezzini, E.Naboni E, et al., A new framework to evaluate urban designusing urban microclimatic modeling in future climaticconditions, Sustainability 10 (2018) 1134.https://doi.org/10.3390/su10041134

McNeel R., Grasshopper: algorithmic modeling for Rhino. http://www.grasshopper3d.com/. (Accessed 28 February 2022)

E.Naboni, A. Milella, R. Vadalà, F. Fiorito, On the localisedclimate change mitigation potential of building facades,Energy and Buildings 224 (2020) 110284.https://doi.org/10.1016/j.enbuild.2020.110284

M. Santamouris, Recent progress on urban overheating and heatisland research. integrated assessment of the energy,environmental, vulnerability and health impact synergieswith the global climate change, Energy and Buildings 207(2020) 109482.https://doi.org/10.1016/j.enbuild.2019.109482

M.Santamouris, L. Ding, F. Fiorito, P. Oldfield, P. Osmond, R.Paolini, D. Prasad, A. Synnefa, Passive and active coolingfor the outdoor built environment – Analysis and assessmentof the cooling potential of mitigation technologies usingperformance data from 220 large scale projects, SolarEnergy 154 (2017) 14-33.https://doi.org/10.1016/j.solener.2016.12.006

M.Santamouris, C. Cartalis, A. Synnefa, D. Kolokotsa, On theimpact of urban heat island and global warming on thepower demand and electricity consumption of buildings–areview, Energy Build. 98 (2015) 119–124.https://doi.org/10.1016/j.enbuild.2014.09.052

M.Santamouris, D.N. Assimakopoulos, Passive Cooling ofBuildings, Routledge (Eds.), London, 1996, pp.484.https://doi.org/10.4324/9781315073668

A.Synnefa, M. Saliari, M. Santamouris, Experimental andnumerical assessment of the impact of increased roofreflectance on a school building in Athens, Energy Build.55 (2012) 7–15.https://doi.org/10.1016/j.enbuild.2012.01.044

Python, (n.d.). https://www.python.org/ (accessed 28 February 2022).

Radiance (n.d.). https://www.radiance-online.org (accessed 28 February 2022).

Rhinoceros, (n.d.). https://www.rhino3d.com (accessed 28 February 2022).

Urban Weather Generator, (n.d.). https://urbanmicroclimate.scripts.mit.edu/uwg.php accessed 28 February 2022)




Copyright (c) 2023 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.