Mortero a base de aglutinantes proteínicos y residuos minerales para elementos interiores = Mortar based on protein binders and mineral waste for interior elements

Darío Miguel López-León, María Isabel Prieto-Barrio, Alfonso Cobo-Escamilla


DOI: https://doi.org/10.20868/ade.2022.5094

Texto completo:

PDF (English)

Resumen


Para este trabajo se han realizado adaptaciones de las técnicas más destacadas en los antecedentes de tratamientos químicos e hidrotérmicos destinados a la extracción proteica para distintas fuentes derivadas de las faenas alimenticias, a gran escala actualmente; de las cuales se aprovecha las propiedades adherentes basadas principalmente en la queratina, compuesto orgánico con trazas mayores al 90% en plumaje y pelaje animal. Los cuales son procesados químicamente para obtener un aglutinante orgánico dosificado en cuatro mixturas A, B, C y D, en las cuales varía el porcentaje y origen del pegante como también la porción de los áridos minerales residuales pulverizados calcáreos (marmolina) y cerámicos (ladrillo) con los cuales, amasados a mano, se forma una pasta homogénea que se modela en moldes normados para proceder al cálculo de sus propiedades físicas tales como coeficiente de absorción de humedad ambiental, dureza superficial y resistencia mecánica máxima a esfuerzos de compresión y flexión.

Abstract

For this work, adaptations have been made of the most outstanding techniques in the history of chemical and hydrothermal treatments aimed at protein extraction for different sources derived from the food industry, on a large scale at present; of which the adhesive properties based mainly on keratin, an organic compound with traces of more than 90% in animal plumage and fur, are taken advantage of. These are chemically processed to obtain an organic binder dosed in four mixtures A, B, C and D, in which the percentage and origin of the glue varies as well as the portion of the residual pulverised calcareous (marble) and ceramic (brick) mineral aggregates with which, The homogeneous paste is then moulded in standard moulds to calculate its physical properties, such as the coefficient of absorption of ambient humidity, surface hardness and maximum mechanical resistance to compressive and flexural stresses.


Palabras clave


Aglutinante proteínico; Residuos calcáreos y cerámicos; Insumos materiales; Protein binder; Calcareous and ceramic wastes; Material inputs

Referencias


Beghetto, Valentina, et al. The leather industry: a chemistry insight Part I: an overview of the industrial process. Sciences At Ca'Foscari, 2013, no 1| 2013.

Charles N. Cone. Adhesive and process of making same. US573516A United States. 1976436. 1934-08-15.

Fang, Shi Qiang, et al. The identification of organic additives in traditional lime mortar. Journal of Cultural Heritage, 2014, vol. 15, no 2, p. 144-150.

Gaibor, N. Y., et al. Alkali activation of recycled ceramic aggregates from construction and demolition wastes. 2020

Hwang, Chao-Lung, et al. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Construction and Building Materials, 2019, vol. 218, p. 519-529.

Lee, Yen Sze, et al. Microwave-alkali treatment of chicken feathers for protein hydrolysate production. Waste and biomass valorization, 2016, vol. 7, no 5, p. 1147-1157.

Lynch, John; Pierrehumbert, Raymond. Climate impacts of cultured meat and beef cattle. Frontiers in sustainable food systems, 2019, vol. 3, p. 5.

Madurwar, Mangesh V.; Ralegaonkar, Rahul V.; Mandavgane, Sachin A. Application of agro-waste for sustainable construction materials: A review. construction and Building materials, 2013, vol. 38, p. 872-878.

Marsal, F.; Morral, E.; Palet, D. Puesta en valor de lanas y pieles de producción nacional. Ministerio de Medio Ambiente y Medio Rural y Marino. 2009.

Poole, Andrew J.; Church, Jeffrey S.; HUSON, Mickey G. Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 2009, vol. 10, no 1, p. 1-8.

Ritchie, Ingrid M.; Lehnen, Robert G. Formaldehyde-related health complaints of residents living in mobile and conventional homes. American journal of public health, 1987, vol. 77, no 3, p. 323-328.

Robbins, Clarence R.; Robbins, Clarence R. Chemical and physical behavior of human hair. New York: Springer, 2012.

Stec, Anna A.; Hull, T. Richard. Assessment of the fire toxicity of building insulation materials. Energy and Buildings, 2011, vol. 43, no 2-3, p. 498-506.

Yang, In, et al. Adhesive and curing properties of chicken feather/blood-based adhesives for the fabrication of medium-density fiberboards. The Journal of Adhesion, 2018, vol. 94, no 14, p. 1137-1154.




Copyright (c) 2023 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.