Valorización de relaves de mineral de oro de la mina Amesmessa en mortero de cemento: propiedades mecánicas, químicas y de microestructura = Valorization of gold ore tailing from Amesmessa mine in cement mortar: mechanical, chemical and microstructure properties.

Amina Baziz, Kherbache Souad, Slimanou Houssama, Bouzidi Nedjima


Texto completo:

PDF (English)


La necesidad de responder a los problemas ambientales causados por los rechazos mineros, muchos enfoques llevados a cabo para resolver estos problemas. En este trabajo, se estudió el relave de mineral de oro proporcionado por la mina Amesmessa como sustitución en el mortero de cemento. Las cantidades de sustitución estudiadas fueron 0, 10, 20, 30 y 40 % del cemento en peso. Se relevó la composición mineralógica de las principales fases de la hidratación del cemento. Se realizaron pruebas experimentales como la compresión, la porosidad y la absorción de agua. Las pruebas revelaron que la sustitución del cemento al 10% es la cantidad óptima para sustituir el cemento. Se demostró una resistencia a la compresión de 33 Mpa, una porosidad de 10,31% y una absorción de agua de 4,83%. Estos valores se acercan a los de las muestras de referencia. Esta sustitución permite preservar el medio ambiente desde dos puntos de vista, mediante la valorización de los residuos de mineral de oro y la disminución de la emisión de CO2 con la disminución de la producción de cemento.


The need to respond the environmental problems causing by mining rejects, many approaches carried out to resolve these problems. In this work, we studied the gold ore tailing provided by Amesmessa mine as replacement in cement mortar. The substitution amounts studied 0, 10, 20, 30, and 40 % of cement in weight. The mineralogical composition was relieved the principal phases of the cement hydration. Experimental tests carried out such as compressive, porosity, water absorption. The tests revealed that the replacement of cement at 10% percent is the optimum amount to replace cement. It showed 33 Mpa of compressive strength, 10.31% porosity, 4.83% water absorption. These values are so close to those of reference samples. This substitution allows preserving the environment from two sides, by valorizing the gold ore tailing and diminishing the CO2 emission with diminishing the cement production.

Palabras clave

Mortero; relaves de mineral de oro; propiedades mecánicas; porosidad; Mortar; gold ore tailing; mechanical properties; porosity.


S.Ahmari, K. Parameswaran, L. Zhang, Alkali activation ofcopper mine tailings and low-calcium flash-furnace coppersmelter slag. J. Mater. Civ. Eng. 27(6), (2015) 04014193.

K.S. Al-Jabri, M. Hisada, S.K. Al-Oraimi, A.H. Al-Saidy, , Copper slag as sand replacement for high performance concrete (2009).

ASTM, ASTM C373 – Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. American Society for Testing and Materials (1994a.).

A.Baziz, N. Bouzidi, D. Eliche-Quesada, Recycling of goldmining reject from Amesmessa mine as ceramic rawmaterial: microstructure and mechanical properties. J.Environ Sci Pollut Res (2021).

F.Bondioli, , L Barbieri, T. Manfredini, Grey ceramic pigment(Fe, Zn) Cr2O4 obtained from industrial fly-ash. Journal ofTile & Brick Int., (2000), 16, 246-248.

R.Borinaga- Treviño, J. Cuadrado J. Canales, E. Rojí, Limemud waste from the paper industry as a partial replacementof cement in mortars used on radiant floor heating systems, Journal of Building Engineering Available online 13 March 2021, 102408.

A.Carlos, I. Masumi, M. Hiroaki, M. Maki, O. Takahisa, Theeffects of limestone aggregate on concrete properties.Construct. Build. Mater., (2010), 24 2363–2368.

X.Elías, Reciclaje de residuos Industriales. Residuos sólidosurbanos y fangos de depuradora. España: Díaz de Santos,(2009).

D.Eliche-Quesada, F. A.Corpas-Iglesias, L.Pérez-Villarejo, F.J.Iglesias-Godino, Recycling of sawdust, spent earth fromoil filtration, compost and marble residues for brickmanufacturing. Construction and Building Materials,(2012), 34, 275 .

European Commission. Report from the commission to the council and the European parliament on implementation of the community waste legislation. COM 2006, 406 (final, Brussels), (2006).

P.T. Fernando, C.G. Joao, J. Said, Durability and environmental performance of alkali-activated Tungsten mine waste mud mortars. J. Mater. Civ. Eng. 22 (9), 897e904 (2010).

S.M. Hameed, A.S. Sekar, Properties of green concretecontaining quarry rock dust and marble sludge powder asfine aggregate. ARPN Journal of Eng. and Applied Scie. (2009), VOL. 4 (4) 83–89.

C.Ince, Reusing gold-mine tailings in cement mortars:Mechanical properties and socio-economic developmentsfor the Lefke-Xeros area of Cyprus. Journal of CleanerProduction, (2019), 238, 117871.

T.Kaosol, Reuse Water Treatment Sludge for Hollow ConcreteBlock Manufacture. International Concrete on Science.Technology and Innovation for Sustainable Well Being(STISWB), (2009), pp. 23–24.

J.Kiventerä, L. Golek, , J. Yliniemi, V. Ferreira, , J. Deja , M.Illikainen, Utilization of sulphidic tailings from gold mineas a raw material in geopolymerization. International Journal of Mineral Processing (2016).

K.Kunt, Utilization of Bergama Gold Tailings as an Additivein the Mortar. Celal Bayar University Journal of Science,Volume 11, Issue 3, (2015).

F.A. Kuranchie, S.K. Shukla, D. Habibi, Mine wastes in western Australia and their suitability for embankment construction. In: Meehan, C.L. (Ed.), Geo-Congress ASCE. Geotechnical Special Publications, San Diego, California (2013).

H.Li, H. Xiao, J. Yuan, J. Ou, Microstructure of cement mortarwith nanoparticles, Compos. B 35 (2004), 185–189,Kustermann A., Keuser M., The influence of steel fiberscontent in concrete on the plastic properties of composite,6th Symposium on Fibre-Reinforced Concretes 2004, 1217

Z.Makhloufi, T. Bouziani, M. Bederina, M. Hadjoudja , Mixproportioning and performance of a crushed limestone sand- concrete. Journal of Building Material and Structure (2014), 10–22.

Z.Ming, I. GuoTung-Cha, P. ChiSun, Highly-efficient greenphotocatalytic cementitious materials with robustweathering resistance: From laboratory to application, J.Environmental Pollution, (2021), Vol. 273, 116510.

S.Roy, GR. Adhikari, RN. Gupta Use of gold mill tailings inmaking bricks: a feasibility study, J. Waste Manag Res(2007), 25:475–482.

N., Toubal Seghir, M. Mellas, Ł. Sadowski, A. Krolicka, A. Zak, The Effect of Curing Conditions on the Properties of Cement-Based Composites Blended with Waste Marble Dust. JOM (2019), 71, 1002–1015.

UNE EN 772-1, Methods of test for masonry units – Part 1: Determination of compressive strength (2002).

C.Vandna , N. Satya Pal , Pt-sensitized MoO3/mpg-CNmesoporous nanohybrid: A highly sensitive VOC sensor,J.Microporous and Mesoporous Materials. Volume 315,110906.

K.Youngjae, K. Minseuk ,S. Jungsoo, P. Hyunsik,Applicability of gold tailings, waste limestone, red mud, and ferronickel slag for producing glass fibers. Journal ofCleaner Production, Volume 203,(2018). Pages 957-965.

Z. Zhao, M. Benzerzour, N. E. Abriak, D. Damidot, L. Courard, D., Wang, Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cement and Concrete Composites, 93, (2018), 155-162.

Copyright (c) 2023 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.