Comportamiento mecánico del hormigón sometido a altas temperaturas confinado con CFRP = Mechanical behaviour of concrete subjected to high temperatures confined with CFRP.

Borja Jiménez, María Isabel Prieto, Alfonso Cobo


DOI: https://doi.org/10.20868/ade.2021.4975

Texto completo:

PDF (English)

Resumen


El hormigón es el material estructural más empleado. En el caso de sufrir una agresión térmica, sus propiedades mecánicas se ven modificadas, siendo en muchos casos necesaria su reparación para poder seguir utilizando la estructura. Teniendo en cuenta las premisas anteriores, el objetivo de la presente investigación es determinar la viabilidad del refuerzo de estructuras de hormigón con CFRP, después de haber sido sometidas a una agresión térmica. Para la realización del trabajo experimental se fabricaron probetas cilíndricas de 100 mm de diámetro y 200 mm de altura, la mitad de las cuales fueron sometidas a 250ºC. Una vez enfriadas, la mitad de las probetas patrón y la mitad de las probetas sometidas a 250ºC se reforzaron con fibra de carbono unidireccional SikaWrap-230 C, para posteriormente ensayar todas ellas a compresión y determinar la viabilidad del refuerzo. Los resultados obtenidos muestran que, debido a la agresión térmica, el hormigón pierde parte de su capacidad resistente, reduciéndose su resistencia máxima en un 26%. Una vez reforzadas las probetas, su resistencia máxima aumenta un 105% en el caso de probetas patrón y un 89,5% en el caso del hormigón sometido a 250ºC.

Abstract

Concrete is the most widely used structural material. In the case of suffering a thermal aggression, its mechanical properties are modified, being in many cases necessary to repair in order to be able to continue using the structure. Taking into account the above premises, the aim of the present research is to determine the viability of reinforcement of concrete structures with CFRP, after being subjected to thermal aggression. For the realization of the experimental work, cylindrical specimens of 100 mm in diameter and 200 mm in height were made, half of which were subjected to 250ºC. Once cooled, half of the standard specimens and half of the specimens subjected to 250ºC were reinforced with SikaWrap-230 C unidirectional carbon fiber, in order to subsequently test all of them in compression and determine the viability of the reinforcement. The results obtained show that due to the thermal aggression, the concrete loses part of its resistance capacity, reducing its maximum resistance by 26%. Once the specimens are reinforced, their maximum strength increases by 105% in the case of standard specimens and by 89.5% in the case of concrete subjected to 250ºC.


Palabras clave


Cemento; temperatura; CFRP; compresión; Concrete; temperature; CFRP; compression

Referencias


Abdulrahman B. Q. & Aziz O. Q. (2021). Strengthening RC flat slab-column connections with FRP composites: A review and comparative study. Journal of King Saud University – Engineering Sciences, 33, pp. 471-481.

ACI 440R-07 (2007). Report on FIber-Reinforced Polymer (FRP) Reinforcemen for Concrete Structures.

Ahmed A., Rahman M. Z., Ou Y., Liu S., Mobasher B., Guo S.& Zhu D. (2021). A review on the tensile behavior offiber-reinforced polymer composites under varying strainrates and temperatures. Construction and BuildingMaterials, 294, 123565.

Anchor R., Malhotra H. & Purkiss J. (1986). Design of structures against fire. Elsevier Applied Science Publisher.

Asadia I., Shafigha P. & Hassana Z. F. B. A. (2018). Thermal conductivity of concrete – A review. Journal of Building Engineering, 20, 81-93.

ASTM D5334 (2014). Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. USA.

ASTM E1530 (2011). Standard test method for evaluating the resistance to termal transmission of materials by the guarded heat flow meter technique. USA.

Baquer Sistach J. (2021). Monográfico 1. La fibra de carbono en refuerzo de estructuras de hormigón, Barcelona: Asociación de consultores de estructuras.

Catalán L. V. & Maestro M. B. (2007) Seguridad frente al fuego de las estructuras de hormigón. Hormigón, 899, 44-51.

Cembureau (2019). Building carbon neutrality in Europe, Engaging for concrete solutions. Décimo Encuentro de Investigadores y Docentes de Ingeniería, Bruselas, Bélgica.

Código Estructural: Capítulo 8. Estructuras de hormigón. Propiedades tecnológicas de los materiales, España, 2021.

CSIC (2019). Documento de Idoneidad Técnica: nº 604R/19 Sistema SIKA CARBODUR - SISTEMA SIKAWRAP. Instituto de Ciencias de la Construcción Eduardo Torroja, Madrid.

Eid R., Paultre P. (2017). Compressive behavior of FRP-confined reinforced concrete columnsEngineering Structures, 132, 518-530.

EN 197-1:2011: Cement - Part 1: Composition, specifications and conformity criteria for common cements. CTN 80 - Cementos y cales. Spain. CTN 83 – Hormigón, Spain. 2011.

EN 934-2:2010+A1:2012. Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures - Definitions, requirements, conformity, marking and labelling, 2019.

EN 1504 (2009). Products and systems for the protection and repair of concrete structures. CEN/TC 104 – Concrete, Spain, 2009.

EN 1542:200. Products and systems for the protection and repair of concrete structures. Test methods. Measurement of bond strength by pull-off. CEN/TC 104 – Concrete, Spain, 2000.

EN 12350-2:2020. Testing fresh concrete - Part 2: Slump test. CTN 83 – Hormigón, Spain, 2020.

EN 12390-3:2020. Testing hardened concrete - Part 3: Compressive strength of test specimens. CTN 83 – Hormigón, Spain, 2020.

EN 12620:2003+A1:2009: Aggregates for concrete. CTN 146 –Áridos, Spain, 2009.

Ercolani, G. D. Empleo de Ultrasonidos y Esclerometría en el diagnóstico de estructuras de hormigón afectadas por elevadas temperaturas,» de IV Conferencia Panamericana de END, Buenos Aires, 2007.

Ferrier E., Rabinovitch O. & Michel L. (2016). Mechanical behavior of concrete–resin/adhesive–FRP structural assemblies under low and high temperatures. Construction and Building Materials, 127, 1017-1028.

FIB 90 (2019). Externally applied FRP reinforcement for concrete structures. Francia.

Fiore V. y Valenza A. (2013). Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications,» Woodhead Publishing Series in Civil and Structural Engineering, 88-121.

González F. J. (2020). Experiencias en la ejecución de refuerzos de estructuras. BIA 2016-80310-P, Madrid.

Guo F., Yuan Y. & Mang H. A. (2016) Determination of the relative significance of material parameters for concrete exposed to fire. International Journal of Heat and Mass Transfer, 100, 191-1984.

Hager I., Tracz T., Choin M. & Mróz K. (2019). Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures, Materials (Basel).

Huang S., Fu Q., Yan L. & Kasal B. (2021). Characterization of interfacial properties between fibre and polymer matrix in composite materials: A critical review. Journal of Materials Research and Technology, 13, 1441-1484.

Huang, X. Pang, P Zhu, Zhang S., Fan Z. & Chen X (2021) Transverse mechanical properties of unidirectional FRP including resin-rich areas. Computational Materials Science, 198, 110701.

Instytut Techniki Budowlanej (2021). European Technical Assessment, ETA-21/0276, Warszawa: EOTA.

Jiménez B. (2020). Procedimiento de ejecución: preparación de superficies para sistemas de refuerzo y pegado rígido. SIKA.S.A.U, Madrid.

Jiménez B. (2020). SIKA® CARBODUR® E, refuerzo de estructuras de hormigón. SIKA. S.A.U, Madrid.

Kasper Y., Albiez M., Ummenhofer T., Mayer C., Meier T., Choffat F., Ciupack Y. & Pasternak H. (2021). Application of toughened epoxy-adhesives for strengthening of fatigue-damaged steel structures. Construction and Building Materials, 275, 121579.

Khoury G. (2000). Effect of Fire on Concrete and Concrete Structures. Progress in, 429-447.

Li L., Shi L., Wang Q., Liu G., Dong J., Zhang H.y Hang G. (2020). A review on the recovery of fire-damaged concrete with post-fire-curing. Construction and Building Materials, 237.

Li J., Xie J., Liu F. & Lu Z. (2019). A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments. Composite Structures, vol. 229, 2019.

López F. C.-G., Marco J. B. & Rodríguez V. C., (2021). Influence of high temperatures on the bond between carbon Fibre-Reinforced polymer bars and concrete. Construction and Building Materials, 309, 124967.

Ma C.-K., Apandi N. M., Yung S. C. S., Hau N. J. y Haur L. W.(2017). Repair and rehabilitation of concrete structuresusing confinement: A review. Construction and BuildingMaterials, 133, 502-515.

Mai A. D., Sheikh M. N. & Hadia M. N. (2021). Strain model for discretely FRP confined concrete based on energy balance principle. Engineering Structures, 241,112489.

Malik M., Bhattacharyya S. & Barai, Sudhirkumar V. B. (2020). Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review. Construction and Building Materials, 270, 121398.

Malik M., Bhattacharyya S. & Sudhirkumar V. B. (2019). Microstructural Changes in Concrete: Postfire Scenario. Journal of Materials in Civil Engineering, 33(2).

Martínez S., (2020). Programa experimental sobre probetas de tamaño intermedio. Ensayos y resultados,» BIA 2016-80310-P, Madrid.

MIL-HDBK-17-1F (2002). Department of defense. United States of America. Composite materials handbook. 1. Polymer matrix composites guidelines for characterization of structural materials, 1 of 5.

Moghaddas A., Mostofinejad D., Saljoughian A. & Ilia E. (2021). An empirical FRP-concrete bond-slip model for externally-bonded reinforcement on grooves. Construction and Building Materials, 281, 122575.

Mostofinejad D. & Arefian B. Generic assessment of effective bond length of FRP-concrete joint based on the initiation of debonding: Experimental and analytical investigation. Composite Structures, 277, 114625.

Mugahed Y. H., Alyousef R., Rashid R. S., Alabduljabbar H. & Hung C.C. (2018). Properties and applications of FRP in strengthening RC structures: A review. Structures, 16, 208-238.

NUREG/CR-7031 ORNL/TM-2009/175 (2009). A Compilation of Elevated Temperature Concrete Material Property Data and Information for Use in Assessments of Nuclear Power Plant Reinforced Concrete Structures. New York.

Obaidat A. T. (2022). Compression behavior of confined circular reinforced concrete with spiral CFRP rope with different slenderness ratios. Results in Engineering, 16, 100615.

Ostrowski K. A. & Furtak K. (2021). The influence of concrete surface preparation on the effectiveness of reinforcement using carbon fibre-reinforced polymer in high-performance, self-compacting, fibre-reinforced concrete. Composite Structures, 276, 114522.

Pendhari S. S., Kant T. & Desai Y. M. (2008). Application of polymer composites in civil construction: A general review. Composite Structures, 84, 114-124.

Proschek P. (2019). Allgemeine Bauaufsichtliche Zulassung. Deutsches Institut fur Bautechnik, Stuttgart.

Rodríguez V., Guerrero H., Alcocer S. M. & Tapia-Hernandez E.(2021). Rehabilitation of heavily damaged beam-column connections with CFRP wrapping and SFRMcasing. Soil Dynamics and Earthquake Engineering, 145,106721.

Russian O., Khan S., Belarbi A. & Dawood M.(2021). Effect of surface preparation technique on bond behavior of CFRP-steel double-lap joints: Experimental and numerical studies. Composite Structures, 255, 113048.

Seshu D. R. y Pratusha A (2013). Study on compressive strength behaviour of normal concrete and self-compacting concrete subjected to elevated temperatures. Magazine of Concrete Research, 65(7), 415-421.

SIKA CORPORATE, (2008). Glass temperatures of different Sikadur products, Zurich.

Shumuye D., Zhao J. y. Wang Z (2019). Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement,» Construction and Building Materials 213, 447–458.

Suescum-Morales D., Ríos J., Martínez A., Cifuentes H. y Jiménez J. R. (2021). Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: A microstructural analysis,» Cement and Concrete Research 140.

Torelli G., Mandal, P., Gillie M. & Tran V.-X., (2016). Concrete strains under transient thermal conditions: A state-of-the-art review. Engineering Structures, 127, 172-188.

TR 55 (2012). Technical Report. Design guidance for strengthening concrete structures usig fibre composite materials, 3rd edition, UK.

Varona F. B. & Baeza, F. J. (12017). Study of residual mechanical properties of concretes after exposure to high temperatures. Hormigón y Acero, 286(69).

Waghmare S., Shelare S., Aglawe & Khope P. (2021). A mini review on fibre reinforced polymer composites. Materials Today: proceedings.

Walz S. (2019). Passive Fire Protection Handbook. SIKA S.A.U, Zurich.

Wang X.-L., Zhao G.-Q., Li K. & Li, M.-H.-F. (2018). Effect of damage parameter variation on bond characteristics of CFRP-sheets bonded to concrete beams. Construction and Building Materials, 185, 184-192.

Wróblewska J. & Kowalski R. (2020). Assessing concrete strength in fire-damaged structure. Construction and Building Materials, 254, 119122.

Zhang H., Li L., Long T., Sarker P., Shi X., Cai G. & Q.Wang ,(2019). The effect of ordinary Portland cementsubstitution on the thermal stability of geopolymerconcrete. Materials, 12 (2501).




Copyright (c) 2022 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.