Metodología para mejorar el confort y la calidad del aire en edificios públicos con tecnología de bajo coste = Methodology to improve comfort and air quality in public buildings with low-cost technology

Beatriz Montalbán Pozas, Beatriz Muriel Delgado, Marta Lucas Bonilla


DOI: https://doi.org/10.20868/ade.2020.4612

Texto completo:

PDF

Resumen


Este artículo presenta una metodología para mejorar la calidad del aire y el confort higrotérmico en edificios públicos mediante el uso de un sistema de monitoreo de código abierto, escalable y de bajo costo y mediante la participación de los usuarios. Esta metodología ha sido probada en cuatro edificios públicos de similares características arquitectónicas y uso, construidos con construcción tradicional, actualmente utilizados como Ayuntamientos, y ubicados en la misma zona climática de la provincia de Cáceres (Extremadura, España). Durante los 12 meses del proyecto, se han instalado sensores en áreas seleccionadas de los cuatro edificios para medir el consumo eléctrico, la temperatura, la humedad y la concentración de CO2. Los datos recopilados por los dispositivos se enviaron a un servidor alojado de forma remota para su almacenamiento seguro. Las series temporales se analizaron y compararon con las facturas de consumo de energía de los tres años anteriores. Además, se incorporó un estudio de los sistemas de climatización, así como el funcionamiento y ocupación de los edificios por parte de los usuarios. Este análisis generó sugerencias para mejorar el confort y la calidad del aire, además de permitir a los usuarios monitorear los datos en tiempo real. Teniendo en cuenta los objetivos marcados, los resultados muestran que es posible cambiar los hábitos de los usuarios, mejorar las condiciones de confort y calidad del aire, y reducir el uso de los recursos públicos aplicando esta metodología y con una inversión muy baja.

Abstract

This paper presents a methodology to improve air quality and hygrothermal comfort in public buildings by using a low-cost, scalable, open-source monitoring system and through users' participation. This methodology has been tested in four public buildings of similar architectural characteristics and use, built with traditional construction, currently used as Town Halls, and located in the same climatic zone in the province of Cáceres (Extremadura, Spain). During the 12 months of the project, sensors have been installed in selected areas of the four buildings in order to measure electricity consumption, temperature, humidity and CO2 concentration. The data collected by the devices were sent to a remotely hosted server for secure storage. The time series were analysed and compared with the energy consumption bills of the three preceding years. In addition, a study of the climate control systems as well as the operation and occupancy of the buildings by users was incorporated. This analysis led to suggestions for improving comfort and air quality, as well as allowing users to monitor the data in real time. Considering the objectives set, the results show that it is possible to change users’ habits, improve comfort and air quality conditions, and reduce the usage of public resources by applying this methodology and with a very low investment.


Palabras clave


Metodología; eficiencia energética; confort; edificio público; bajo coste; Methodology; energy efficiency; comfort; public building; low cost

Referencias


Agencia Estatal de Meteorología (2018). “Resumen climático”. [Online]. Available: http://www.aemet.es/es/noticias/2018/01/Resumen_climatico_2017. [Accessed: 31-Jan-2020].

Ahn, K.-U. and Park, C.-S. (2016). “Correlation between occupants and energy consumption,” Energy Build., vol. 116, pp. 420–433, Mar. 2016.

Al horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A. and Elsarrag, E. (2016). “Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature,” International Journal of Sustainable Built Environment, vol. 5, no. 1

Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E. and Kindinis, A. (2017). “Energy and comfort assessment in educational building: Case study in a French university campus,” Energy Build., vol. 143, pp. 202–219, May 2017.

Aste, N.; Buzzetti, M.; Caputo, P. and Del Pero, C. (2018). “Regional policies toward energy efficiency and renewable energy sources integration: Results of a wide monitoring campaign,” Sustain. Cities Soc., vol. 36, pp. 215–224.

Bamodu, O.; Xia, L. and Tang, L. (2017). “An indoor environment monitoring system using low-cost sensor network,” Energy Procedia, vol. 141, pp. 660–666, Dec. 2017.

Batista, A. P.; Freitas, M. E. A. and Jota, F. G. (2014). “Evaluation and improvement of the energy performance of a building’s equipment and subsystems through continuous monitoring,” Energy Build., vol. 75, pp. 368–381.

Ciuffoletti, A. (2018). “Low-Cost IoT: A Holistic Approach,” J. Sens. Actuator Networks, vol. 7, no. 2, p. 19, May 2018.

European Commission (2008). “Monitoring and control of energy consumption in municipal public buildings over the Internet (ENERINTOWN Project)”. [Online]. Available: https://ec.europa.eu/energy/intelligent/projects/en/projects/enerintown. [Accessed: 12-Jan-2020].

Eurostat and European Commission (2017). “Final Energy Consumption,” Eurostat. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview. [Accessed: 10-Jan-2020].

Extremadura University (2019). “SmartPolitech Project. School of Technology,” 2016. [Online]. Available: http://smartpolitech.unex.es/. [Accessed: 15-Sep-2019].

Geng, Y.; Ji, W.; Lin, B.; Hong, J. and Zhu, Y. (2018). “Building energy performance diagnosis using energy bills and weather data,” Energy Build., vol. 172, pp. 181–191.

Langevin, J.; Gurian, P. L. and Wen, J. (2015). “Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices,” J. Environ. Psychol., vol. 42, pp. 94–115.

Ministerio de Energía Turismo y Agenda Digital (2017). “Plan Nacional de acción de eficiencia energética 2017-2020”.

Ministry of Industry Energy and Tourism (2007). Spanish Government., Regulation of Thermal Installations in Buildings. Boletín Oficial del Estado, pp. 35931–35984.

Patiño-Cambeiro, F.; Armesto, J.; Bastos, G.; Prieto-López, J. I. and Patiño-Barbeito, F. (2019). “Economic appraisal of energy efficiency renovations in tertiary buildings,” Sustain. Cities Soc., vol. 47, p. 101503.

Ray Ingenieria Electronica (2015). “Wireless STHR sensors”. [Online]. Available: http://www.ray-ie.com/. [Accessed: 02-Jan-2020].

Sharmin, T.; Gül, M.; Li, X.; Ganev, V.; Nikolaidis, I. and Al-Hussein, M. (2014). “Monitoring building energy consumption, thermal performance, and indoor air quality in a cold climate region,” Sustain. Cities Soc., vol. 13, pp. 57–68.

Tam, V.; Almeida, L. and Khoa, L. (2018a). “Energy-related occupant behaviour and its implications in energy use: A chronological review,” Sustainability, vol. 10, no. 8, p. 2635, 2018.

Tam, V.; Almeida, L. and Le, K. (2018b). “Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review,” Sustainability, vol. 10, no. 8, p. 2635, Jul. 2018.

Vellei, M.; Natarajan, S.; Biri, B.; Padget, J. and Walker, I. (2016). “The effect of real-time context-aware feedback on occupants’ heating behaviour and thermal adaptation,” Energy Build., vol. 123, pp. 179–191, Jul. 2016.

Zhang, Y.; Bai, X.; Mills, F. P. and Pezzey, J. C. V. (2018). “Rethinking the role of occupant behavior in building energy performance: A review,” Energy Build., vol. 172, pp. 279–294, Aug. 2018.

Zhang, Y. and Zhao, R. (2009). “Relationship between thermal sensation and comfort in non-uniform and dynamic environments,” Build. Environ., vol. 44, no. 7, pp. 1386–1391, Jul. 2009.




Copyright (c) 2021 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.