Comportamiento mecánico de secciones de hormigón y mortero = Mechanical behavior of concrete-mortar sections

O. Pérez Casal, Alfonso Cobo Escamilla, M.E. Moreno Fernández, M.I. Prieto Barrio


DOI: https://doi.org/10.20868/ade.2018.3795

Texto completo:

PDF

Resumen


Resumen

El objetivo del presente trabajo es comparar el comportamiento de los elementos estructurales sometidos a flexión o compresión después de haber sido reparados, mediante la sustitución del hormigón deteriorado por mortero de cemento Portland o mortero modificado con polímeros. En primer lugar, las probetas cúbicas se fabricaron con diferentes proporciones de reparación de mortero de cemento para ensayar a compresión, con los materiales colocados tanto en serie como en paralelo. Del análisis de resultados, se puede concluir que los sistemas mixtos - mortero de hormigón modificado con polímeros sometido a compresión pueden soportar cargas mayores que la reparación del mortero de cemento Portland, aunque en ningún caso pueden restaurar la capacidad de carga del hormigón. En los elementos sometidos a flexión, las vigas reparadas pueden alcanzar la resistencia inicial a la fractura de las vigas y soportar cargas aún mayores. Por lo tanto, la reparación de estructuras de cemento deterioradas con morteros de reparación es una buena alternativa, especialmente en elementos estructurales sometidos a flexión, y se realizan con morteros de cemento Portland. En las estructuras sometidas a compresión, es mejor utilizar morteros de reparación modificados con polímeros que aumentan la ductilidad cuando el mortero de reparación se ubica en serie con respecto a la carga.

Abstract

The aim of the present work is to compare the behavior of structural elements subjected to bending or compression after having been repaired, by substituting the deteriorated concrete by Portland cement mortar or mortar modified with polymers. Firstly, cubic specimens were manufactured with different repair concrete-mortar proportions to be tested to compression, with the materials placed both in series and in parallel. From the results analysis, it can be concluded that mixed systems - polymer-modified concrete mortar subjected to compression can withstand greater loads than the repair Portland cement mortar, although they are in no case able to restore the load capacity of concrete. In elements subjected to bending, the repaired beams are able to achieve the initial fracture strength of the beams, and support even higher loads. Therefore, repairing deteriorated concrete structures using repair mortars is a good alternative, especially in structural elements subjected to bending, and performed using Portland cement mortars. In structures subject to compression, it is better to use repair mortars modified with polymers which increase the ductility when the repair mortar is located in series regarding the load


Palabras clave


Mortero de reparación; resistencia a la flexión; resistencia a la compresión; cantidades; ductilidad; hormigón; Repair mortar; bending strength; compression strength; quantities; ductility; concrete

Referencias


ACI-318S-08. Building Code Requirements for Structural Concrete (ACI-318-08) and Commentary. (2008). American Concrete Institute, Farmington Hills, MI.

AENOR, (2011). UNE-EN 197-1:2011, Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes. AEN/CTN 80 – Cementos y cales, España.

AENOR, (2006). UNE-EN 1504-3:2006, Productos y sistemas para la protección y reparación de estructuras de hormigón. Definiciones, requisitos, control de calidad y evaluación de la conformidad. Parte 3: Reparación estructural y no estructural, AEN/CTN 83 – Hormigón, España.

AENOR, (2004). (Asociación Española de Normalización y Certificación). UNE-EN 13139/AC:2004. Áridos para morteros. AEN/CTN 146 – Áridos, España.

AENOR, (2009). UNE-EN 12620:2003+A1:2009. Áridos para hormigón. AEN/CTN 146 – Áridos, España.

AENOR, (2011). UNE-UNE 36065:2011: Barras corrugadas de acero soldable con características especiales de ductilidad para armaduras de hormigón armado. AEN/CTN 36 - Siderurgia, España.

AENOR (2015). UNE-EN 10088-1:2015: Aceros inoxidables. Parte 1: Relación de aceros inoxidables. AEN/CTN 36 - Siderurgia, España.

AENOR, (2013). UNE-EN 12390-1:2013: Ensayos de hormigón endurecido. Parte 1: Forma, dimensiones y otras características de las probetas y moldes. AEN/CTN 83 – Hormigón, España.

AENOR, (2009). UNE-EN 12390-2:2009. Ensayos de hormigón endurecido. Parte 2: Fabricación y curado de probetas para ensayos de resistencia. AEN/CTN 83 - Hormigón, España.

AENOR, (1994). UNE 83702:1994 IN. Materiales de reparación. Preparación de superficies de hormigón armado para su reparación. Recomendaciones de uso. AEN/CTN 83 - HORMIGÓN, España.

AENOR, (2009). UNE-EN 12390-3:2009. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. AEN/CTN 83 - HORMIGÓN, España.

AENOR, (2009). UNE-EN 12390-5:2009. Ensayos de hormigón endurecido. Parte 5: Resistencia a flexión de probetas. AEN/CTN 83 - HORMIGÓN, España.

Ahmad, S., Elahi, A., Barbhuiya, S.A., & Farid, Y. (2012). Use of polymer modified mortar in controlling cracks in reinforced concrete beams. Construction and building materials, 27, 91-96.

Al-Zahrani, M.M., Maslehuddin, M., Al-Dulaijan, S.U., & Ibrahim, M. (2003). Mechanical properties and durability characteristics of polymer and cement based repair materials. Cement and concrete research, 25, 527-537.

Cabrera, J.G., & Al-Hasan, A.S. (1997). Performance properties of concrete repair materials. Construction and Building Materials, 11(5-6), 283-290.

Calavera, J. (2005). Patología de estructuras de hormigón armado y pretensado. 2ª edición. Instituto Técnico de Materiales y Construcciones (INTEMAC), Madrid. ISBN: 8488764219.

Calmon, J.L., Sauer, A.S., Vieira, G.L., & Teixeira, J.E.S.L. (2014). Effects of windshield waste glass on the properties of structural repair mortars. Cement and concrete composites, 53, 88-96.

Eethar Thanon, D., & Mahyuddin R. (2011). High strength characteristics of cement mortar reinforced with hybrid fibres. Construction and building materials, 25(5), 2240-2247.

EHE. Instrucción de Hormigón Estructural. (2008). Ministerio de Fomento. Madrid, Spain.

Emberson, N. K., & Mays, G. C. (1990). Significance of property mismatch in the patch repair of structural concrete, part I: proper-ties of repair systems. Magazine of Concrete. Research, 42(152), 147-160.

Eurocode 2 – EN 1992. Design of concrete structures. Part 1.1: General rules and rules for buildings. (2004) European Committee for Standardization, Brussels.

Fernández, M. (1994). Patología y Terapéutica del hormigón armado. 3ª edición. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid. Cap XI, 279-327. ISBN: 8474932025

Fowler, D.W. (1999). Polymers in concrete: a vision for 21st century. Cement &Concrete Composites, 21, 449-452.

Hassan, K.E., Brooks, J.J., & Al-Alawi, L (2001). Compatibility of repair mortars with concrete in a hot-dry environment. Cement and concrete composites, 23, 93-101.

Hemanth, J. (2006). Compressive strength and microstructural properties of ligtweight high-strength cement mortarreinforced with eloxal. Materials and design, 27, 657-664.

Hongyan, M., & Zongjin, L. (2013). Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms. Construction and Building Materials, 47, 579-587.

Mallat, A., & Alliche, A. (2011). Mechanical investigation of two fiber-reinforced repair mortars and the repaired system. Construction and building materials, 25(4), 1587-1595.

Mangat, P.S., & Limbachiya, M.C. (1997). Repair material properties for effective structural application. Cement and Concrete Research, 27(4), 601-617.

Mays, G., & Wilkinson, W. (1987). Polymer repairs to concrete: their influence on structural performance. ACI SP-JOO, 351-375.

Medeiros, M.H.F., Helene, P., & Selmo, S. (2009). Influence of EVA and acrylate polymers on some mechanical properties of cementitious repair mortars. Construction and building materials, 23, 2527-2533.

Medina, E. (2010). Evaluación del comportamiento mecánico y estructural de las armaduras de acero inoxidable austenítico AISI 304 y DÚPLEX AISI 2304. Tesis Doctoral, UPM, EUATM.

Metcherine, V. (2013). Novel cement-based composites for the strengthening and repair of concrete structures. Construction and building materials, 41, 365-373.

Ming-Gin, L. Wang, Y.C, Chiu, C.T. (2007). A preliminary study of reactive powder concrete as a new repair material. Construction and building materials, 21, 182-189.

Mirza, J., Mirza, M.S., & Lapointe, R. (2002). Laboratory and field performance of polymer-modified cement based repair mortars in cold climates. Construction and building materials, 16, 365-374.

Morgan, D.R. (1996). Compatibility of concrete repair materials and systems. Construction and Building materials, 10(1), 57-67.

Nounu, G., & Chaudhary, Z. (1999). Reinforced concrete repairs in beams. Construction and building materials, 13, 195-212.

Ohama., Y. (1996). Polymer-based materials for repair and improved durability: Japanese experience. Construction and Building Materials, 10(1), 77-82.

Pascal, S., Alliche, A., & Pilvin, Ph. (2004). Mechanical behaviour of polymer modified mortars. Materials science and engineering, 380, 1-8.

Phoo-ngernkham, T., Sata, V., Hanjitsuwan, S., Ridtirud, C., Hatanaka, S., & Chindaprasirt, P. (2015). High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and building materials, 48, 482-488.

Quanbin, Y., Beiron, Z., Shuging, Z., & Xueli, W. (2000. Properties and applications of magnesia–phosphate cement mortar for rapid repair of concrete. Cement and Concrete Research, 30(11), 1807-1813.

Quiao, F., Chau, C.K., & Li, Z. (2010). Property evaluation of magnesium phosphate cement mortar as patch repair material. Construction and building materials, 24, 695-700.

Rashid, H., Ueda, T., Zhang, D., Mychaguchi, K., & Nagoy, H. (2015). Experimental and analytical investigations on the behavior of interface between concrete and polymer cement mortar under hygrothermal conditions. Construction and Building materials, 94, 414-425.

RC-08. (2009). Instrucción para la recepción de cementos. Con comentarios de los miembros de la Comisión Permanente del cemento. Secretaría Técnica, España.

Robery, P., & Shaw, J. (1997). Materials for the repair and protection of concrete. Construction and building materials, 11 (56), 275-281.

Shash., A.A. (2005). Repair of concrete beams-a case study. Construction and building materials, 19, 75-79.

Valcuende, M.O. (1994). Reparación de elementos lineales de hormigón armado. Comportamiento en servicio. Tesis doctoral. Universidad Politécnica de Valencia, Escuela Técnica Superior de Arquitectura. Valencia, Spain.

Wang, R., Wang, P.M., & Li, X.G. (2005). Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars. Cement and concrete research, 35, 900-906.

Xiang-Ming K. (2013). The influence of silanes on hydration and strength development of cementitious systems. Cement and concrete research, .67, 168-178.

Xiang-Ming, K., Wu, C.C., Zhang, Y.R., Li, J.L. (2013). Polymer-modified mortar with a gradient polymer distribution: Preparation, permeability, and mechanical behaviour. Construction and Building materials, 38, 195-203.

Zhou, J., Ye, G., & Van Breguel,. K. (2016). Cement hydration and microstructure in concrete repairs with cementitious repair materials. Construction and building materials, 112, 765-772.




Copyright (c) 2018 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.