Estudio experimental del comportamiento a compresión de hormigones autocompactantes reforzados con fibras de acero = Experimental study of performance self-compacting concrete reinforced with steel fibers

J. L. Sánchez, A. Cobo, B. Díaz, I Mateos


DOI: https://doi.org/10.20868/ade.2015.3100

Texto completo:

PDF

Resumen


Resumen

El hormigón autocompactante reforzado con fibras de acero presenta simultáneamente las ventajas de los hormigones autocompactantes y de los reforzados con fibras. Se consigue un material de altas prestaciones en cuanto a su colocación en obra, tenacidad y ductilidad. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante reforzado con fibras de acero. Se han realizado ensayos a compresión a distintas edades, así como ensayos no destructivos (medida de la velocidad de ultrasonidos e índice esclerométrico). Los resultados muestran la variación de la respuesta del hormigón con el tiempo, la diferencia existente con los hormigones tradicionales y la viabilidad del empleo de técnicas no destructivas para el control de este tipo de hormigones.



Abstract

Self-compacting steel fibers reinforced concrete simultaneously has the advantages of self-compacting concrete and reinforced with fibers. A material of high performance in their laying on site, toughness and ductility is achieved. This paper has studied the mechanical behavior of a self-compacting concrete reinforced with steel fibers. Have been made compression tests, as well as non-destructive testing (measuring the speed of ultrasound and sclerometer test). The results show the variation of the response of concrete with time, the difference with the traditional concrete and the feasibility of using non-destructive techniques for controlling this type of concrete.


Palabras clave


Steel fibers reinforced concrete: self compacting concrete, compression tests

Referencias


Almansa E.M. & Cánovas M.F.(1997). Mix design of steel fibre reinforced concrete. Mater Construcc 47, 11-26. doi. http://dx.doi.org/10.3989/mc.1997.v47.i247-248.492

Altun F. & Haktanir T.A. (2004). Comparative experimental study of Steel fibre-additive reinforced concrete beams. Mater Construcc 54(276), 5-15. doi. http://dx.doi.org/10.3989/mc.2004.v54.i276.252

AMERICAN CONCRETE INSTITUTE: Commite 318 Building Code for Structural Concrete, ACI 318-08. ACI Manual of Concrete practice 2008. Detroit (2008)

Anderson, W. E., “Proposed Testing of Steel-Fibre Concrete to Minimize Unexpected Service Failures,” Proceedings, RILEM Symposium of Testing and Test Methods of Fibre Cement Composites (Sheffield, 1978), Construction Press, Lancaster, 1978, pp. 223-232.

Balaguru, P., and Ramakrishnan, V., “Freeze-Thaw Durability of Fiber Reinforced Concrete,” ACI JOURNAL, Proceedings, Vol. 83, No. 3, May-June 1986, pp. 374-382.

Barr, B., “The Fracture Characteristics of FRC Materials in Shear,” Fiber Reinforced Concrete Properties and Applications, SP-105, American Concrete Institute, Detroit, 1987, pp. 27-53.

Barros J.A.O. & Antunes J.A.B. (2003). Experimental characterization of the flexural behaviour of Steel fibre reinforced concrete according to RILEM TC 162-TDF recommendations. RILEM TC 162 TDF Workshop, 77-89.

Batson, Gordon B., “Use of Steel Fibers for Shear Reinforcement and Ductility,” Steel Fiber Concrete, Elsevier Applied Science Publishers, Ltd., 1986, pp. 377-399.

Brandshaug, T.; Ramakrishnan, V.; Coyle, W. V.; and Schrader, E. K., “A Comparative Evaluation of Concrete Reinforced with Straight Steel Fibers and Collated Fibers with Deformed Ends.” Report No. SDSM&T-CBS 7801, South Dakota School of Mines and Technology, Rapid City, May 1978, 52 pp.

CEB-CIP: CEB-FIB Model Code (1990), Laussanne (Switzerland 1991).

CEN: Eurocode2 EC2, Brussels, Belgium (1992).

Chen, W., and Carson, J. L., “Stress-Strain Properties of Random Wire Reinforced Concrete,” ACI JOURNAL, Proceedings, Vol. 68, No. 12, Dec. 1971, pp. 933-936.

Cunha V.M.C.F. (2010). Steel fibre reinforced self-compacting concrete: from micromechanics to composite behavior. Guimaraes, Portugal: University of Minho.

Dixon, J., and Mayfield, B., “Concrete Reinforced with Fibrous Wire,” Journal of the Concrete Society, Concrete, Vol. 5, No. 3, Mar. 1971, pp. 73-76.

EHE 2008. Instrucción Española de Hormigón Estructural 2008. Ministerio de Fomento, Madrid.

Gray, R. J., and Johnston, C. D., “Measurement of Fibre-Matrix Interfacial Bond Strength in Steel Fibre Reinforced Cementitious Composites,” Proceedings, RILEM Symposium of Testing and Test Methods of Fibre Cement Composites, Sheffield, 1978, Construction Press, Lancaster.

Gray, R. J., and Johnston, C. D., “The Effect of Matrix Composition on Fibre/Matrix Interfacial Bond Shear Strength in Fibre-Reinforced Mortar,” Cement and Concrete Research, Pergamon Press, Ltd., Vol. 14, 1984, pp. 285-296. doi. http://dx.doi.org/10.1016/0008-8846(84)90116-9

Gray, R. J., and Johnston, C. D., “The Influence of Fibre/Matrix Interfacial Bond Strength on the Mechanical Properties of Steel Fibre- Reinforced-Mortars,” International Journal of Cement Composites and Lightweight Concrete, Vol. 9, No. 1, Feb. 1987, pp. 43-55. doi. http://dx.doi.org/10.1016/0262-5075(87)90036-4

Hannant, D. J., Fibre Cements and Fibre Concretes, John Wiley & Sons, Ltd., Chichester, United Kingdom, 1978, p. 53.

Jindal, Roop L., “Shear and Moment Capacities of Steel Fiber Reinforced Concrete Beams,” Fiber Reinforced Concrete—International Symposium, SP-81, American Concrete Institute, Detroit, 1984, pp. 1-16.

Jindal, Roop L., and Hassan, K. A., “Behavior of Steel Fiber Reinforced Concrete Beam-Column Connections,” Fiber Reinforced Concrete—International Symposium, SP-81, American Concrete Institute, Detroit, 1984, pp. 107-123.

Jindal, R., and Sharma, V., “Behavior of Steel Fiber Reinforced Concrete Knee Type Connections,” Fiber Reinforced Concrete Properties and Applications, SP-105, American Concrete Institute, Detroit, 1987, pp. 475-491.

Johnston, C. D., “Steel Fibre Reinforced Mortar and Concrete—A Review of Mechanical Properties,” Fiber Reinforced Concrete, SP-44, American Concrete Institute, Detroit, 1974, pp. 127-142.

Johnston, C. D., “Definitions and Measurement of Flexural Toughness Parameters for Fiber Reinforced Concrete,” ASTM, Cement, Concrete and Aggregates, Vol. 4, No. 2, Winter 1982, pp. 53-60.

Johnston, C. D., and Gray, R. J., “Flexural Toughness First-Crack Strength of Fibre-Reinforced-Concrete Using ASTM Standard C 1018,” Proceedings, Third International Symposium on Developments in Fibre Reinforced Cement Concrete, RILEM, Sheffield, July l, 1986, Paper No. 5.1.

Johnston, C. D., and Gray, R. J., “Uniaxial Tension Testing of Steel Fibre Reinforced Cementitious Composites,” Proceedings, International Symposium on Testing and Test Methods of Fibre-Cement Composites, RILEM, Sheffield, Apr. 1978, pp. 451-461.

Johnston, C. D., and Gray, R. J., “Flexural Toughness First-Crack Strength of Fibre-Reinforced-Concrete Using ASTM Standard C 1018,” Proceedings, Third International Symposium on Developments in Fibre Reinforced Cement Concrete, RILEM, Sheffield, July l, 1986, Paper No. 5.1.

Johnston, C. D., “Steel Fibre Reinforced Mortar and Concrete—A Review of Mechanical Properties,” Fiber Reinforced Concrete, SP-44, American Concrete Institute, Detroit, 1974, pp. 127-142.

Johnston, C. D., “Effects on Flexural Performance of Sawing Plain Concrete and of Sawing and Other Methods of Altering Fiber Alignment in Fiber Reinforced Concrete,” Cement, Concrete and Aggregates, ASTM, CCAGDP, Vol. 11, No. 1, Summer 1989, pp. 23-29.

Kar, N. J., and Pal, A. K., “Strength of Fiber Reinforced Concrete,” Journal of the Structural Division, Proceedings, ASCE, Vol. 98, No. ST-5, May 1972, pp. 1053-1068.

Lankard, D. R., “Flexural Strength Predictions,” Conference Proceedings M-28, “Fibrous Concrete—Construction Material for the Seventies,” Dec. 1972, pp. 101-123.

Naaman, A. E., and Shah, S. P., “Bond Studies of Oriented and Aligned Fibers,” Proceedings, RILEM Symposium on Fiber Reinforced Concrete, London, Sept. 1975, pp. 171-178.

Naaman, A. E., and Shah, S. P., “Pullout Mechanism in Steel Fiber Reinforced Concrete,” ASCE Journal, Structural Division, Vol. 102, No. ST8, Aug. 1976, pp. 1537-1548.

Narayanan, R., and Darwish, I. Y. S., “Use of Steel Fibers as Shear Reinforcement,” ACI Structural Journal, Vol. 84, No. 3, May-June 1987, pp. 216-227.

Narayanan, R., and Darwish, I. Y. S., “Fiber Concrete Deep Beams in Shear,” ACI Structural Journal, Vol. 85, No. 2, Mar.-Apr. 1988, pp. 141- 149.

Okamura, H. Self Compacting High-Performance Concrete. Journal of Concrete International vol. 19, nº7, 1977 p. 50-54

Oliveira F.L. (2010). Design-oriented constitutive model for steel fibre reinforced concrete. Barcelona, Spain: Universidad Politécnica de Catalunya.

Romualdi, James P., and Mandel, James A., “Tensile Strength of Concrete Affected by Uniformly Distributed Closely Spaced Short Lengths of Wire Reinforcement,” ACI JOURNAL, Proceedings, Vol. 61, No. 6, June 1964, pp. 657-671.

Salehian H. & Barros J.A.O. (2015). Assesment of the performance of Steel fibre reinforced self-compacting concrete in elevated slabs. Cement & Concrete Composites, 55, 268-280. http://dx.doi.org/10.1016/j.cemconcomp.2014.09.016

Sasani M. & Sagiroglu S. (2008). Progressive collapse of reinforced concrete structures: a multihazard perspective. ACI Struct J, 105(1), 95-105.

Shah, S. P., and McGarry, F. J., “Griffith Fracture Criteria and Concrete,” Engineering Mechanics Journal, ASCE, Vol. 97, No. EM6, Dec. 1971, pp. 1663-1676.

Shah, S. P., “New Reinforcing Materials in Concrete Construction,” ACI JOURNAL, Proceedings, Vol. 71, No. 5, May 1974, pp. 257- 262.

Shah, S. P., “Fiber Reinforced Concrete,” Handbook of Structural Concrete, edited by Kong, Evans, Cohen, and Roll, McGraw-Hill, 1983.

Shah, S. P., and Naaman, A. E., “Mechanical Properties of Steel and Glass Fiber Reinforced Concrete,” ACI JOURNAL, Proceedings, Vol. 73, No. 1, Jan. 1976, pp. 50-53.

Shah, S. P., and McGarry, F. J., “Griffith Fracture Criteria and Concrete,” Engineering Mechanics Journal, ASCE, Vol. 97, No. EM6, Dec. 1971, pp. 1663-1676.

Snyder, M. L., and Lankard, D. R., “Factors Affecting the Strength of Steel Fibrous Concrete,” ACI JOURNAL, Proceedings, Vol. 69, No. 2, Feb. 1972, pp. 96-100.

Sood, V., and Gupta, S., “Behavior of Steel Fibrous Concrete Beam Column Connections,” Fiber Reinforced Concrete Properties and Applications, SP-105, American Concrete Institute, Detroit, 1987, pp. 437-474.

Soranakom C., Mobasher B. & Destrée X. (2007). Numerical simulation of FRC round panel tests and full scale elevated slabs. Deflection and stiffness issues in FRC and thin elements, SP-248, American Concrete Institute, Farmington Hills MI, 31-40.

Stang, H., and Shah, S. P., “Failure of Fiber Reinforced Composites by Pull-Out Fracture,” Journal of Materials Science, Vol. 21, No. 3, Mar. 1986, pp. 935-957. doi. http://dx.doi.org/10.1007/BF01117378

Taheri M., Barros J.A.O. & Salehian H. (2012). Parametric study of the use of strain softening/hardening FRC for RC elemnts falling in bending. J Mater Civil Eng 24(3), 259-274. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000373

Turmo J., Banthia N., Gettu R. & Barragán B. (2008). Study of the shear behavior of fibre reinforced concrete beams. Mater Construcc 58(292), 5-13. Doi: http://dx.doi.org/10.3989/mc.2008.40507

Umoto, Kabayashi, and Fujino, “Shear Behavior of Reinforced Concrete Beams with Steel Fibers as Shear Reinforcement,” Transactions of the Japan Concrete Institute, Vol. 3, 1981, pp. 245-252.

Waterhouse, B. L., and Luke, C. E., “Steel Fiber Optimization,” Conference Proceedings M-28, “Fibrous Concrete—Construction Material for the Seventies,” Dec. 1972, pp. 630-681.

Williamson, G. R., The Effect of Steel Fibers on the Compressive Strength of Concrete, SP-44: Fiber Reinforced Concrete, American Concrete Institute, Detroit, 1974, pp. 195-207.

Williamson, G. R., “Steel Fibers as Web Reinforcement in Reinforced Concrete,” Proceedings US Army Science Conference, West Point, Vol. 3, June 1978, pp. 363-377.

Works, R. H., and Untrauer, R. E., Discussion of “Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reinforcement,” ACI JOURNAL, Proceedings, Vol. 61, No. 12, Dec. 1964, pp. 1653-1656.

Xie J., Guo J., Liu L. & Xie Z. (2015). Compressive and flexural behaviours of a new Steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building materials 79, 263-272. Doi. http://dx.doi.org/10.1016/j.conbuildmat.2015.01.036




Copyright (c) 2016 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.