Acondicionamiento Pasivo de una Vivienda en la Sierra de Madrid = Passive Conditioning of a Building in Sierra of Madrid

Carlos Morón, Alfonso García, Daniel Ferrández, Kenzo Hosokawa


DOI: https://doi.org/10.20868/ade.2015.3034

Texto completo:

PDF

Resumen


En el presente trabajo se analiza una posible solución para la rehabilitación energética de edificios situados en la Sierra de Madrid con un clima continental. Para la realización del mismo se escogió una vivienda construida en el año 1986 siguiendo las pautas de la ya derogada NTE-79. Su falta de intervención durante casi treinta años ha permitido realizar una simulación entre el estado actual y el estado posterior de la vivienda, tras haber tomado diferentes medidas de rehabilitación calificadas como pasivas, ya que no incluyen mecanismos ni dispositivos que requieran de alguna fuente alimentación externa más allá de la que nos permite el entorno en el cual se encuentra ubicado nuestro edificio. Se pretende demostrar que el empleo de soluciones de rehabilitación que no requieran de un consumo de energía externo, también pueden servir para mejorar la calificación energética de las viviendas actuales de manera más económica y que permita alcanzar el horizonte 2020 europeo para la mejora de la eficiencia energética. Las soluciones propuestas en este documento han ido encaminadas a cumplir con el actual Código Técnico de la Edificación, en su apartado de Ahorro de Energía recientemente modificado CTE-DB HE. Al final, se representan los resultados con la mejora en la calificación obtenida tras la puesta a punto de las medidas simuladas. 

 

Abstract


In this work a possible solution to the energy rehabilitation of buildings located in Sierra of Madrid, with a continental climate, is analyzed. To execute this study, a 1986 building was chosen following the NTE-79 (which is currently repealed) guidelines. Its lack of intervention for nearly 30 years lets us make a simulation between the current state of the building and the subsequent one. The simulation was done after having taking different rehabilitation measures, classified as passives, because they do not include mechanisms or devices that required any external power sources beyond the ones that the environment, where our building is located, offer to us. It is pretended to demonstrate that the use of rehabilitation solutions do not required an external energy consume. It can also improve the energy rating of current building more cheaply, and allows reaching the European 2020 goal to improve efficiency energy. The suggested solutions we have described in this paper have been conducted to comply with the technical building code, specifically with its recently modified section, CTE-DB HE Energy Saving Section. Finally, the results are represented including the rating improvement after the development of the simulated measurements.  


 

 


Palabras clave


Acondicionamiento Pasivo; Energía; Rehabilitación; Certificación Energética ; Passive Conditioning; Energy; Rehabilitation; Energetic Certification

Referencias


Becker, S, Frew, B, Andresem, G, et al. (2015). Renewable build-up pathways for the US: Generation costs are not system costs. Energy, 81 (pp. 437-445). http://dx.doi.org/10.1016/j.energy.2014.12.056

CTE. Código Técnico de la Edificación. REAL DECRETO 314/2006, de 17 de MAR, de la Presidencia del Gobierno. B.O.E.: 28- MAR-2006. nº 74.

Deng, S, Wang, RZ & Dai, YJ. (2014). How to evaluate performance of net zero energy building. Energy, 71 (pp. 1- 16). http://dx.doi.org/10.1016/j.energy.2014.05.007

DIRECTIVA 2010/31/UE del Parlamento Europeo y del Consejo de 19 de mayo de 2010 relativa a la eficiencia energética de los edificios

Gómez Orea, D & Gómez Villarino, M. T. (2013). Evaluación de impacto ambiental. España, Ediciones Mundi-Prensa. 3º Edición.

Guedi, I & Ochoa, C. (2014). Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system. Energy, 76 (pp. 375-384). http://dx.doi.org/10.1016/j.energy.2014.08.028

Kapsalaki M, Leal V, Santamouris M. (2012) A methodology for economic efficient design of Net Zero Energy Buildings. Energy Build 55:765e78 http://dx.doi.org/10.1016/j.enbuild.2012.10.022

Mills A, Wiser R. (2010) Implications of wide-area geographic diversity for shortterm variability of solar power. Tech. Rep.

Lawrence Berkeley National Laboratory; NBE – CT – 79. Norma Básica de la Edificación sobre Condiciones Térmicas de los Edificios. REAL DECRETO 2429/1979, de 6- JUL, de la Presidencia del Gobierno. B.O.E.: 22-OCT-79, (Derogada)

Ochoa CE, Aries MBC, van Loenen EJ, Hensen JLM. (2012) Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Appl Energy, 95:238e45. http://dx.doi.org/10.1016/j.apenergy.2012.02.042

RITE. Reglamento de Instalaciones Térmicas de Edificios. Real Decreto 1027/2007, de 20 de julio, de la Presidencia del Gobierno. B.O.E. del 28 de febrero de 2008.

Sartori I, Geier S, Lollini R, Athienitis A, Pagliano L. Comfort and energy efficiency recommendations for net zero energy buildings. In: EuroSun 2010-p.1. International Conference on Solar Heating, Cooling and Buildings; 2010. p. 1.

Sorsak, M, Zegarak, V, Premrow, M, Psunder, I et al. (2014). Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia. Energy, 77 (pp. 57- 65). http://dx.doi.org/10.1016/j.energy.2014.04.081

Yang L, Wan K W, Li DHW, Lam JC. (2011) A new method to develop typical weather years in different climates for building energy use studies. Energy 36: http://dx.doi.org/10.1016/j.energy.2011.07.053




Copyright (c) 2016 Autor / BY-NC

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.