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I. INTRODUCTION

N an attempt to deal with the climate change, the European 
Union is committed to decarbonisation by 2050 (European 

Union, 2016), reducing CO2 emissions by 80% and energy 
consumption by 50%. Saving energy by retrofitting existing 
buildings is one of the most attractive and low-cost options for 
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reducing CO2 emissions (Kylili et al., 2016). Residential and 
service sector buildings are responsible for 29.5% of the final 
energy consumption (IDAE, 2018), to maintain thermal 
comfort and indoor air quality (IAQ), as well as the need to 
supply the required domestic hot water (DHW), which are 
supplied through thermal facilities. Building energy systems 
proper behaviour is quite complex since these systems consist 
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of sensors, actuators, controllers, and devices simultaneously 
interacting in a very dynamic mode. Poor maintenance, 
improper performance of components, installation faults, and 
control errors significantly affect the efficiency of energy 
systems.  

In operation systems, fault detection and diagnosis (FDD) are 
vital to reduce the energy consumption (Ahmad t al., 2016). A 
FDD problem in building energy systems can also be regarded 
as a pure machine learning problem (Kalogirou, 2003). If there 
is sufficient training data, the task of fault detection is to 
distinguish whether the patterns of monitoring data are like 
those of the normal training data; and if not, it means that there 
is, at least, one fault.  

FDD methods are classified into data-driven, grey box and 
prior knowledge-based methods (Yang et al., 2014) or into 
history-based, qualitative model-based and quantitative model-
based methods (Katipamula et al., 2005). According to 
(Mirnaghi et al., 2020), precise modelling is vital for FDD, 
since the characterization of the real dynamic behaviour is base 
for diagnosis and fault detection. In this sense, data-driven 
models seem to be promising (Yang et al., Kim et al., 2016, 
2018). 

Data-driven or black-box models need data extracted from 
the monitoring system of the facility and advanced data analysis 
tools. They are constructed simply by measuring the input and 
output data of each component (or box) and fitting a specific 
mathematical function that corresponds to the extracted 
recorded data. Therefore, black-box models, which have been 
shown to have high accuracy, do not require the understanding 
of the system physics; however, they have poor generalization 
capabilities (Afram et al., 2015).   

The monitoring system gathers relevant data over time to 
evaluate equipment or system performance (ASHRAE, 2014). 
Data measured, among others, are the energy consumption, 
temperatures, mass flow rates, etc., at a specific time frequency. 
Since databases are large, data-mining techniques are used to 
extract usable data that are the basis for further data-driven 
models’ construction. The most used data-mining techniques 
are clustering, classification, and regression (Lumbreras et al., 
2020). Nevertheless, before applying data-mining techniques, 
raw data collected by the monitoring system must be processed, 
since it usually contains missing values and noise that should 
be removed. Besides, the identification of outliers is a key step 
for all applications related to data mining, as they can disturb 
the real nature of the data. 

Considering the relevance of the raw-data treatment, in this 
work, 9 raw time data series are taken from the Supervisory 
Control and Data Acquisition (SCADA) (Boyer S.A., 2009) 
system of a thermal facility that supplies the DHW and heating 
demands of a residential building. Data series are processed 
with a script generated in R software (R Software, 2022). The 
objective is to obtain valid data series, removing missing values 
and identifying the outliers as a contribution for further data-
mining application and data-driven patterns of the facility. 

After the introduction and the definition of the objective in 
Section 1, the case study and the methodology are explained in 
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Section 2. Section 3 contains the graphical and numerical 
results. Finally, the conclusions are presented in Section 4. 

II. CASE STUDY

The thermal facility is in a building with 26 social housing 
units at Durango (Basque Country, northern Spain), Fig. 1. A 
more extensive description of the building can be found in 
Ref.(BEST, 2012).   

A. Description of the thermal facility and the meter devices
The thermal facility supplies DHW and heating to the whole

building. The generation system has a 68-kW water-water 
reversible ground-source heat pump (GSHP) and a 120-kW 
natural gas condensing boiler. The storage system has three 
buffer tanks with an accumulation capacity of 2,000 l each. Two 
of them are used to store DHW and are connected in series; the 
third tank is used for heating storage. 

The priority of the control of the thermal system is to cover 
the DHW demand and afterwards the heating demand. The 
GSHP covers either the DHW or the heating demands and 
provides exclusively the energy to preheat the water coming 
from the supply network. The boiler can cover DHW, and the 
heating demands simultaneously and provides the energy until 
the preheated water reaches the DHW consumption 
temperature. The set-point temperature values for the 
preheating tank and the DHW final consumption tank are 40°C 
and 55°C, respectively. Over the year, the non-heating season 
(May 15-October 14) and the heating season (October 15-May 
14) are distinguished.

The meter devices coded as C7, C8, C16, C17, C26, C28,
C31, C32 and C34 belong to the monitoring system of the 
thermal facility.  

• Meters C7, C8, C16, C17 and C34 account for the thermal
energy in kWh.

• Meters C26 and C28 account for the consumption of

Fig. 1. Case study building. 
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electrical energy in kWh in the GSHP and gas 
consumption in m3 in the boiler respectively.  

• Finally, meters C31 and C32 account for the DHW
consumption in m3 and heating in kWh at the consumption 
points respectively.

A scheme of the facility with the numbering of the main 
components and the location of the meter devices C7, C8, C16, 
C17, C26, C28, C31, C32 and C34 can be found in Figure 2 and 
Table 1. 

B. Methodology for raw data treatment
As said, raw time data series for one year, from June 1st,

2019, to May 31st, 2020, of meters C7, C8, C16, C17, C26, 
C28, C31, C32 and C34 are obtained from SCADA. The main 
handicap of these data is that the values are accumulated every 
day and may include errors that produce inconsistencies for 
further data analysis. Therefore, the first step to be made is to 

create a methodology that cleans the errors and extracts the 
appropriate data for each of the sensors. 

For that, a method that combines Excel with R software is 
created for data processing. To begin with, Excel is used to 
display the raw data series from SCADA and to pre-process 
them. After that, pre-processed data series are included in a R-
script which plots the data in the form of graphs, according to 
the following procedure:   

• Firstly, each time data series with cumulative values are
displayed in scatter plots according to the time record
order, where gaps refer to the missing data. These plots
enable us to evaluate the quality of each raw time data
series and to calculate the percentage of valid data.

• Secondly, the valid data of each time data series that 
contain daily values are displayed in boxplots using the 
interquartile range (IQR), which accounts the distance 
between the Q1 first and Q3 third quartile as follows:

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑄𝑄1 − 𝑄𝑄3    (1) 
• Data points outside the boundary of the boxplot’s whiskers 

are taken as outliers, with the following limit values:
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑄𝑄1 − 1.5 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼 (2) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 > 𝑄𝑄3 + 1.5 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼 (3) 

• Finally, the median value, the Q1 and Q3 values, and the 
range of each daily data series are calculated.

III. RESULTS

In this section, the graphical and numerical results are 
showed. 

A. Results for cumulative values
As mentioned in the previous section, scatter plots are used 

to depict the raw time data series for the meters: C7, C8, C16, 
C17, C26, C28, C31, C32 and C34, with 366 data points each. 
The first data point belongs to June 1st, 2019, and the last one 
to May 31st, 2020. Besides, heating season data (from October 
15th, 2019, to May 14th, 2020) is represented inside the shadow 
area; and missing data, due to loss of connection between the 
meters of thermal facility and the monitoring system, is 
observed as gaps in the plots (Fig. 3, 4 and 5). The following 
conclusions are obtained from the plots: 

• Fig. 3 shows the scatter plots obtained for the meters C7 
(DHW distribution from GSHP), C8 (DHW distribution 
from boiler), C16 (heating distribution from GSHP) and 
C17 (heating distribution from boiler) located in the 
distribution circuit. The valid data points for each one is 
84.4% of the total data points and the following trends are 
distinguished in the data distribution according to the 
sensor:

• Since C16 and C17 are the sensors used to measure the 
heating demand, their slope in the data distribution 
increase in the shaded heating season.

• It is also observed that heating is mainly produced with 
the GSHP (C16) compared to the boiler heating 
production (C17). The difference between the 
maximum and the minimum values for C16 and C17 
data series are 31,436 kWh and 3,596 kWh

Fig. 2. Scheme of the facility.  

TABLE I 
NUMBERING AND BRIEF DESCRIPTION OF THE MAIN 

ELEMENTS. 

No DESCRIPTION 
1 Boiler 
2 DHW/heating diverter from the boiler 
3 DHW/heating mixer from the boiler 
4 HX for DHW from the boiler 
5 DHW final temperature storage 
6 DHW preparation storage 
7 HX for DHW from the GSHP 
8 HX for heating from the boiler 
9 Heating mixer from the GSHP and the boiler 
10 Heating diverter from the boiler and the GSHP 
11 Heating storage 
12 Ground Source Heat Pump (GSHP) 
13 DHW/heating diverter from GSHP 
14 DHW and heating 3-way valve 
15 DHW four-way valve 
16 Heating preparation 3-way valve 
17 Diverter 
18 Diverter 
19 Net water 3 –way valve 
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respectively as showed in Fig. 3. 
• Besides, a light slope is observed in the data 

distribution for C16 out of the heating season that 
could be due to faults in the meter, or even faults in the 
distribution elements of the primary circuit (see 
numbers 13 and 14 in Fig. 2).

• The sensors that measure DHW demand produced by 
GSHP (C7) and boiler (C6) follow a linear trend over 
the year, showing that both equipment participate in 
supplying DHW.After performing the energy 
calculations explained in the previous section, the 
result of the energy demands and consumptions are 
shown together with the CO2 emissions of the building 
in its initial state, comparing them with the same 
indicators of the case relative to the improvement 
proposed in the building's thermal installations. This 
comparison can be seen in Table 3.

• Fig. 4 shows the scatter plots obtained for C26, C28 
and C34 located in the generation circuit. Accordingly, 
the valid data points for C26 (GSHP) and C28 (boiler) 
are 84.4% of the total data points and for C34 
(underground heat exchanger) 62.6%. In addition, and 
because of evident reasons, a higher slope in the data

distribution is observed in the heating season. 
• Finally, Fig. 5 shows the scatter plots obtained for 

the meters C31 (DHW consumption) and C32 (heating 
consumption) located in the final consumption circuit. 
The valid data points for each one is 84.4% of the total 
data points. As it is common, the slope in the data 
distribution is almost constant for C31 and increases 
only during the heating season for C32.

B. Results for daily values
As mentioned in the methodology section, the valid daily

data for the meters, C7, C8, C16, C17, C26, C28, C31, C32 and 
C34 are depicted in boxplots, where outliers are represented 
with circumferences (Fig. 6, 7, 8). The median value, the Q1 
and Q3 values and the range for each daily data series are also 
included (Table 2, Table 4, Table 5). The following trends are 
observed:  

• Fig. 6 and Table 2 show the results of C7, C8, C16 and 
C17 meters of the distribution circuit; all datasets have 
outliers.

• Fig. 7 and Table 3 show the results for the C26, C28 
and C34 meters of the generation circuit as can be seen 
only C28 and C34 datasets have outliers.

• Fig. 8 and Table 4 show the results for the C31 and 
C32 meters of the consumption circuit; it is noted that 
only C31 dataset has outliers.

Fig. 3. Scatter plots for C7, C8, C16 and C17.  

Fig. 4. Scatter plots for C26, C28 and C34. 

Fig. 5. Scatter plots for C31 and C32. 

Fig. 6. Boxplots for C7, C8, C16 and C17.  
TABLE II 

STATISTICAL PROPERTIES FOR C7, C8, C16 AND C17 DATASETS 

Fig. 7. Boxplots for C26, C28 and C34. 
TABLE III 

STATISTICAL PROPERTIES FOR C26, C28 AND C34 DATASETS 

UNITS MEDIAN Q1 Q3 OUTLIER RANGE 
C7 kWh 97 72 129 >214.5 - 0-334
C8 kWh 71 63 80 >105.5 <37.5 0-201

C16 kWh 163.5 19.5 234.5 >557 - 0-918
C17 kWh 0 0 38 >95 - 0-181

UNITS MEDIAN Q1 Q3 OUTLIER RANGE 
C26 kWh 77.2 44.3 111.5 - - C26
C28 m3 8 7.3 10.2 >14.5 <2.9 C28 
C34 kWh 68 40 201 >442.5 - C34 
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C26 and C32 do not have outliers. For these datasets there 
are no values that exceed the lower and upper limits indicated 
by the whiskers. Therefore, the values for C26 and C32 datasets 
are between the ranges indicated in Table 3 and Table 4. 

C26 and C32 do not have outliers. For these datasets there 
are no values that exceed the lower and upper limits indicated 
by the whiskers. Therefore, the values for C26 and C32 datasets 
are between the ranges indicated in Table 3 and Table 4. 

IV. CONCLUSIONS

Obtaining proper data series, free of missing values and 
outliers is the first step for any application that uses data series. 
For example, data-mining techniques application and data-
driven models construction are used for solving FDD problems 
in building thermal facilities. Unfortunately, monitoring 
systems with large amount of sensor are still rare in building 
thermal facilities but they will become more widespread in the 
near future, due to the lower price and the versatility of these 
products. This work describes a methodology to provide 
suitable raw time data series obtained from a SCADA, using 
advanced data analysis tools. 

According to the results, the time data series of C7, C8, C16, 
C17, C31, C32 and C34 meters, have a 62.6% valid data and 
84.4% for C26 and C28 sensors. Besides, in the generation 
system, the median for daily values of the GSHP electrical 
energy and geothermal energy consumption is 77.2 kWh and 68 
kWh respectively; meanwhile, the median for boiler daily gas 
consumption is 8 m3. According to the median of the daily 
values obtained for the time data series of meters C7, C8, C17 
and C16, which correspond to the heating and DHW circuits, 
the highest values belongs to C7 and C16 (GSHP branches), 
being 97 kWh and 163.5 kWh respectively, since more energy 
is supplied with the GSHP than with the boiler. In the 
consumption points, the median for daily values of the time data 
series of the meters C31 (DHW) and C32 (heating) are 3.6 m3 
and 208.6 kWh respectively. Besides, for each time data series, 
valid ranges are established and the outliers are identified. 

The procedure applied is suitable to get the goal of this work. 
Future work should include the increase of the database for 
further FDD application in the facility. 
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