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Inspecciones en la gestión del agua de fachadas ventiladas basadas en la evaluación in situ y pruebas de laboratorio 
Insights in the water management characteristics of rear-ventilated façades based on on-site assessment and laboratory testing 

I. INTRODUCTION 

ear-ventilated façades are contemporary construction 
systems which are widely adopted by architects and 

building practitioners as these offer a number of technical and 
aesthetic benefits in comparison to traditional façades 
(unventilated walls, vented walls and cavity walls). A 
ventilated wall has vent openings at the air cavity (top and 
bottom openings) to promote air circulation (Straube, 2009), 
whereas a vented wall only has vent openings at the bottom of 
the wall, usually provided for drainage (Straube, 1999). In 
contrast to traditional walls, the cladding of rear-ventilated 
walls is formed by independent pieces which are assembled 
using the open joinery system. They tend to incorporate water 
management features into their design and construction 
(drained and screened walls), unlike perfect barrier systems 
(e.g. most exterior insulation finish systems) and traditional 
construction (storage or mass buffering walls). In all cases 
(cavity walls, vented walls and rear-ventilated walls), the 
exterior layer is separated from the interior layer by an air gap 
or cavity. Furthermore, rear-ventilated façades are façade 
systems which can be used in renovation projects to improve 
the energy efficience of the building, by means of the addition 
of a rainscreen cladding in front of the old enclosure, or in 
new projects. 

Rear-ventilated façades were first defined by Anderson and 
Gill (Anderson, 1988), who pintpointed the different role 
played by the distinct layers in the overall performance of the 
façade. These solutions are basically composed of two leaves 
and a fully ventilated air cavity in between. In typical 
ventilated façades, the outer leaf (cladding) is detached from 
the inner leaf (bearing wall or supporting wall), to which is 
mechanically fixed by specific anchorage points using or not a 
secondary structure, and the overall system is supposed to be 
designed following the rainscreen principle (Garden, 1963). 
When a secondary structure is used it can be made of timber 
or metal (steel, stainless steel, galvanized steel or aluminium). 
Inside the air cavity a thermal insulation layer can be placed 
on the exterior side of the interior wall leaf. This insulation 
material should be defined in accordance with an EN standard 
or an ETA (European Technical Assesssment). Basically, it 
can be assumed that rear-ventilated façades have arisen from 
the combination of multi-wythe enclosures and the rainscreen 
concept.  

The aim of the present study is to provide a clear 
understanding of the mechanisms that might cause water 
infiltration in rear-ventilated façade systems. So, the water 
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management features of rear-ventilated façades to the 
combined action of wind-driven rain and driving rain wind 
pressures, can be improved. To this effect, the mechanisms of 
rainwater penetration through vertical and horizontal open 
joints have been studied and analyzed in the first section of the 
paper. Secondly, the enclosure design of an existing building 
executed with a rear-ventilated façade system has been 
described and discussed by means of an on-site assessment. In 
the on-site analysis the constructive details have been related 
to the preferential rainwater pathways and the typical observed 
damages. As a result, a water management hypothesis of the 
façade has been proposed, based on a new methodology 
published in previous works (Arce, 2015; Arce, 2016). Then, 
this water management hypothesis has been validated by 
means of laboratory experiments. Finally, the obtained results 
from both analysis have been compared and the conclusions 
have been drawn.  

II. MECHANISMS OF RAINWATER PENETRATION THROUGH

JOINTS 

Garden (Garden, 1963) summarises that the emerging of 
water leakage in building envelopes requires the simultaneous 
action of the following regarded factors: 

- Presence of water on the wall. 
- Existing opening(s) on the wall (such as cracks or joints) 
to permit its passage. 

- Forces driving the water into the opening. 
So, when one of these factors is cancelled out, the water is 

then not able to cause leakage on the building envelope. As 
Garden (Garden, 1963) hypothesized, if all of the acting forces 
can be controlled or eliminated, then water even if present on 
the wall will not infiltrate through it. 

The acting forces for water ingress in open joint claddings 
are: kinetic energy of raindrops (direct entry), surface tension, 
gravity action, pressure differences, local air currents, 
hydrostatic pressures and capillary forces. Of these, kinetic 
energy and differential pressure are a function of weather 
events (Chew, 2001) as well as local air currents. The rest are 
a function of material properties and constructive design of the 
joints. This list of forces has been studied in several papers by 
different authors (Garden, 1963; Birkeland, 1963; Chown, 
1997; AAMA, 2000; Bassett, 1996…), but curiously, they do 
not always gather hydrostatic pressure and local air currents. 

When considering the water management features of the 
rear-ventilated façade typology, the analysis might be carried 
out taking into account two levels: (a) the response to wind 
driven rain of the open joint itself and (b) the response to wind 
driven rain of the panel.  

In the following lines the possible response scenarios to 
wind driven rain of the joint are briefly analysed and 
discussed. 

R 
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A. Gravity action 

Gravity is the tendency of water to flow downwards the 
face of a wall and into the openings that lead inwards and 
downwards (Bassett, 1996; Straube, 2005) (see a in Fig.1). 
Note that in horizontal joints of less than 0.5 mm rainwater 
will not flow through the opening by gravity due to surface 
tension (Birkeland, 1963). 

B. Surface tension 

Surface tension is the contractive tendency of the surface of 
a liquid that allows it to resist an external force. The surface 
tension between the interface of two different means depends 
on their nature and represents an equilibrium that corresponds 
to the minimum part of the free surface forces of the whole 
system. A consequence of this equilibrium is that the mean 
with minor internal cohesion forces will tend to surround the 
one with major internal cohesion. This is why the surface 
tension can be described as the tendency of water to stick to 
the surface of the wall that is already wetted (Bassett, 1996) 
(see b in Fig.1).  

In small openings, the surface tension of water will 
introduce a meniscus on the interior sides of the joint when no 
water is supplied at that location due to rivulet formation (Van 
den Bossche, 2013). It means that the opening can be occluded 
creating a bridge that will allow the water of the rivulet to 
overflow it and continue its way down. Water will enter the 
joint gap once the surface tension is breached by another 
acting force, like gravity or pressure differences. 

C. Capillary action 

Capillarity is the ability of a liquid to flow in narrow spaces 
without the assistance of, and in opposition to external forces. 
According to Branz (Bassett, 1996), the cappillary action is 
the tendency for liquids to fill small openings, lifting water up 
against the force of gravity (see c in Fig.1).  

Capillary action is influenced by the diameter of the gap. 
The smaller the radio of the gap is, the higher the capillary 
action is. It is an effect that acquires major importance when 
the joint width is less than 0.5 mm (Birkeland, 1963).  
According to Mas et al. (Mas, 2011), capillary action and 
surface tension have less importance in joints of 0.8 cm or 
above. Furthermore, the process of evaporation of this 
rainwater is longer.  

D. Kinetic energy of raindrops caused by wind velocities 

Wind forces can easily lead rainwater droplets through 
openings along the building enclosure during rain events, 
since wind gives the rain a horizontal velocity component that 
provides the droplets with an oblique trajectory (see d in 
Fig.1).   

In order to have rainwater infiltration by means of this 
phenomena, it is required joints of more than 4 mm 
(Birkeland, 1963). Pardal and Paricio (Pardal, 2006) studied 

this phenomenon in rear-ventilated façades. They assume that 
in order to prevent the impact of the wind driven rain droplet 
onto the exterior side of the inner leaf, the air cavity thickness 
should be enough to minimize the kinetic energy of the droplet 
acquiring then a perpendicular trajectory. Avellaneda 
(Avellaneda, 1997) assessed that an air cavity thickness 
between 7 and 29 cm has not an impact on the water 
infiltration rate onto the inner leaf. However, the design of the 
joint (widht, thickness and shape) is a key factor when 
working with air cavity thicknesses below 7cm (Pardal, 2006). 

E. Pressure differences 

Pressure differences between the exterior and interior sides 
of the enclosure can allow water to enter the wall inwards 
through small openings that might otherwise resist leakage 
(see e in Fig.1).  Many studies have shown that it is the acting 
force with the greatest contribution to water leakage (Straube, 
2001).  

Rear-ventilated façades are typically conceived or perceived 
as PER (Pressure Equalized Rainscreen) walls, where the 
pressure difference across the rainscreen is typically lower 
than 25 Pa under static conditions (Rousseau, 1998). As the 
exterior pressure is not constant, the pressure in the cavity will 
also vary depending on the degree of pressure equalisation or 
pressure moderation. The predominant parameters affecting 
the degree of pressure equalisation is the airtightness of 
interior and exterior plan and the air volume in the cavity. 
Even in static conditions air flows will arise from windward to 
leeward side in the cavity, causing lateral air movements in the 
cavity. It is a variable situation in the building that depends 
upon the direction of the wind at each case. Consequently, it is 
highly recommended to compartmentalize the air cavity 
between areas and/or façades where significant pressure 
differences can be expected (Pardal, 2006; Huedo, 2010). A 
lack of pressure equalization (due to inadequate 
compartmentalization) may induce higher wind loads on the 
façade components and change the overall behaviour of the 
system in terms of watertightness as well. Note that rear-
ventilated façades in practice are not compartmentalized. 

F. Local air currents 

Water can penetrate a wall by being transported along a 
stream of moving air. It will percolate across barriers or 
through openings, cracks and holes. Control of penetrating 
water usually also requires considering the control of air 
movement of the surrounding environments.   

In the case of rear-ventilated façades, two possible sources 
for local air currents are the airflow induced by thermal 
buoyancy and the airflow induced by the wind. The airflow 
induced by thermal buoyancy or stack effect that takes place 
inside the air cavity of rear-ventilated façades is supposed to 
generate an upwards air stream with velocity values ranging 
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IV. CONCLUSIONS

First of all, it is worth to pinpoint that there is a lack of 
knowledge concerning the water management features of rear-
ventilated façades. It is possible to improve the water 
management performance of rear-ventilated façades to the 
combined action of wind-driven rain and driving rain wind 
pressures if the mechanisms that might cause water infiltration 
are well understood. It is not a good strategy to assume that no 
water will be able to reach the exterior surface of the thermal 
insulation layer in rear-ventilated façades and/or infiltrate 
inside the air cavity, as demonstrated the obtained results 
when subjecting the specimen to European water tightness test 
procedures.  

The study-case was chosen because of the expected good 
water management skills of the constructive details of the 
vertical and horizontal joints. Nevertheless, even with ΔP = 0 
Pa, 0.05% of the impinging rainwater on the cladding may 
reach the insulation layer and 0.25% might infiltrate inside the 
air cavity. Hence, a key aspect of these types of systems is to 
foresee the drainage of the stagnant rainwater at the bottom 
border of the façade. It is an aspect that has been corroborated 
during the visual inspection of the building and the on site 
assessment the study-case. 

The results also showed that water infiltration rates were not 
closely dependent on the applied pressure differences in front 
of the cladding in any collection location, apart from gutter 
A2. In this case, a slightly upwards infiltration trend was 
observed for rising pressure differences.  

The vertical profile can be implemented in order to reduce 
and drain the retained capillary rainwater between the contact 
surface of the profile and the panel. 
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