Improving the Scoring System with the Choosing by Advantages (CBA) elements to evaluate Construction-Flows using BIM and Lean Construction = Mejora del sistema Scoring con los elementos de selección por ventajas (CBA) para evaluar los flujos de construcción utilizando BIM y Lean Construction

Xavier Brioso, Claudia Calderón-Hernández


DOI: https://doi.org/10.20868/abe.2019.2.3987

Texto completo:

PDF (English)

Resumen


Abstract

The multicriteria decision-making (MCDM) methods are used as Lean tools, specially, the Choosing by Advantages (CBA) method. CBA has been successfully applied to several construction management projects and it has proven many benefits over the traditional MCDM methods, among them, Scoring method, which is widely used in public and private projects. The main purposes are to improve the Scoring system with the CBA elements and to describe a teaching strategy applied in the School of Civil and Building Engineering. The present study proposes three methods to evaluate the best construction-flow option using 4D models and Lean Construction, based on the adaptation of the CBA system to the Scoring system. It offers a case study in which we select the best construction-flow option during structural work among four clusters of sectorization designs for a residential building. We compare and discuss how it is best to combine the Scoring and CBA approaches, which complement each other. The CBA and modified Scoring systems obtained very similar results. The methods were validated with the similar rankings, the improved collaboration, the survey responses from stakeholders and the transparency of the decision-making process. We recommend the inclusion of CBA elements in the overall framework, to create greater transparency and to reduce the time to reach consensus. The study suggests that MCDM methods combined with 4D models are useful means of achieving better comprehension of the construction flow and thus choosing the best construction alternatives.

Resumen

Los métodos de toma de decisiones multicriterio (MCDM) se utilizan como herramientas Lean, especialmente, el método de selección por Ventajas (CBA). CBA se ha aplicado con éxito a varios proyectos de gestión de la construcción y ha demostrado muchos beneficios sobre los métodos tradicionales de MCDM, entre ellos, el método de Scoring, el cual se usa frecuentemente en proyectos públicos y privados. Este trabajo tiene como objetivos principales mejorar el sistema de Scoring con los elementos de CBA y describir una estrategia de enseñanza aplicada en una escuela de Ingeniería Civil. El presente estudio propone métodos para evaluar la mejor opción de flujo de construcción utilizando modelos 4D y Lean Construction, basados en la adaptación del sistema CBA al sistema de Scoring. Se ofrece un estudio de caso en el que se selecciona la mejor opción de flujo de construcción entre cuatro grupos de diseños de sectorización para un edificio residencial. Se compara y discute sobre la mejor combinación de los enfoques de Scoring y CBA, los cuales se complementan entre sí. El CBA y el sistema de Scoring modificado obtuvieron resultados muy similares. Los métodos se validaron por medio de resultados similares, colaboraciones optimizadas, respuestas satisfactorias en las encuestas de las partes interesadas y por la transparencia del proceso de toma de decisiones que se percibió. Se recomienda la inclusión de elementos del CBA en el marco general del sistema Scoring, para crear una mayor transparencia y reducir el tiempo para llegar a un consenso. El estudio sugiere que los métodos MCDM combinados con modelos 4D son medios útiles para lograr una mejor comprensión del flujo de construcción y, por lo tanto, elegir las mejores alternativas..


Palabras clave


Multicriteria decision-making; Scoring System; Choosing by Advantages; Building Information Modeling; Lean Construction; Toma de decisiones multicriterio; sistema scoring; elementos de selección por ventajas Building Information Modeling; Lean Construction

Referencias


P. Arroyo, I. Tommelein, and G. Ballard (2016). Selecting globally sustainable materials: A case study using Choosing by Advantages. Journal of Construction Engineering and Management-ASCE, 142(2), pp. 1–10.

P. Arroyo, I. Tommelein and G. Ballard (2015). Comparing AHP and CBA as Decision Methods to Resolve the Choosing Problem in Detailed Design, Journal of Construction Engineering and Management-ASCE, 14, 1, 8pp.

A. Schöttle, P. Arroyo and M. Bade (2015). Comparing Three Methods in the Tendering Procedure to Select the Project Team. 23rd Annual Conference of the International Group for Lean Construction. Perth, Australia, 29-31 Jul 2015.

P. Arroyo, C. Mourgues, F. Flager and M. Correa (2018). A new method for applying choosing by advantages (CBA) multicriteria decision to a large number of design alternatives. Energy and Buildings, 167, pp. 30-37.

J. Suhr (1999). The Choosing by Advantages Decision making System, Quorum, Westport, CT, 293 pp.

C.A. Johnsen and F. Drevland (2016), 'Lean and Sustainability: Three Pillar Thinking in the Production Process' In: 24th Annual Conference of the International Group for Lean Construction. Boston, USA, 20-22 Jul 2016.

P. Orihuela y J. Orihuela (2008). Evaluación de la estandarización en proyectos de Vivienda, ELAGEC 2008, Pontificia Universidad Católica de Chile, Santiago, Chile.

L. Koskela (1992). Application of the New Production Philosophy to Construction, CIFE Technical Report #72, Department of Civil Engineering, Stanford University, Stanford, USA.

G. Ballard (2008). The Lean Project Delivery System: An Update, Lean Construction Journal, 2008 Issue, pp. 1-19.

X. Brioso (2015). Integrating ISO 21500 Guidance on Project Management, Lean Construction, and PMBOK. Procedia Engineering, 123 (2015), pp. 76 – 84.

X. Brioso (2015). El Análisis de la Construcción sin Pérdidas (LeanConstruction) y su relación con el Project & Construction Management: Propuesta de Regulación en España y su Inclusión en la Ley de la Ordenación de la Edificación. PhD thesis. Technical University of Madrid, Spain, 2015.

X. Brioso., A. Humero, D. Murguia, J. Corrales and J. Aranda (2018). Using Post-Occupancy Evaluation of Housing Projects to Generate Value for Municipal Governments. Alexandria Engineering Journal, 57 (2), pp. 885-896

T. Hartmann, H. Van Meerveld, N. Vossebeld and A. Adriaanse (2012). Aligning building-information model tools and construction-management methods. Autom. Constr., vol. 22, 2012.

M. Greif (1991). The Visual Factory. Productivity Press, Cambridge. 281 p.

I. Kolstad and A. Wiig (2009). Is Transparency the Key to Reducing Corruption in Resource-Rich Countries? World Development. Volume 37, Issue 3, March 2009, Pages 521-532.

M. Bac (2001). Corruption, connection and transparency: Does a better screen imply a better scene? Public Choice 107, pp 87-96.

J. C. Bertot, and P. T Jaeger, and J. M. Grimes (2010). Crowd-sourcing Transparency: ICTs, Social Media, and Government Transparency Initiatives. Proceedings of the 11th Annual International Conference on Digital Government Research, pp 51 -58.

L. Koskela (2000). An Exploration towards a Production Theory and its Application to Construction. PhD Dissertation, VTT Building Technology, Espoo, Finland. 296 pp., VTT Publications: 408, ISBN 951-38-5565-1; 951-38-5566-X.

K. Parrish, and I.D. Tommelein, (2009). Making Design Decisions Using Choosing by Advantages. 17th Annual Conference of the International Group for Lean Construction. Taipei, Taiwan, 15-17 Jul 2009.

M.G. Correa, P. Arroyo, C. Mourgues and F. Flager, (2017). Comparing Choosing by Advantages and Weighting, Rating and Calculating Results in Large Design Spaces. 25th Annual Conference of the International Group for Lean Construction. Heraklion, Greece, 9-12 Jul 2017.

A. Schöttle and P. Arroyo, (2017). Comparison of Weighting-Rating-Calculating, Best Value, and Choosing by Advantages for Bidder Selection. Journal of Construction Engineering and Management-ASCE, 2017, 143(8), pp. 1-12.

D. Murguia and X. Brioso (2017). Using Choosing by Advantages and 4D Models to Select the Best Construction-Flow Option in a Residential Building. Procedia Engineering, 196, pp. 470-477.

P. Arroyo, I. Tommelein, and G. Ballard, G. (2014). Comparing Weighting Rating and Calculating vs. Choosing by Advantages to Make Design Choices. 22nd Annual Conference of the International Group for Lean Construction. Oslo, Norway, 25-27 Jun 2014.

L. Rokach and O. Maimon (2005). Clustering methods, in: Data Mining and Knowledge Discovery Handbook, Springer-Verlag, New York,: pp. 321–352. doi: 10.1007/ 0- 387- 25465- X _ 15 .

V. Belton and T.J. Stewart (2002). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer.

M.E. Asmar, A.S. Hanna, and C.K. Chang (2009). Monte Carlo simulation approach to support alliance team selection. J. Constr. Eng. Manage., 10.1061/(ASCE)CO.1943-7862.0000074, 1087–1095.

P. Ballesteros-Pérez, M. Skitmore, E. Pellicer, and M.C. González-Cruz (2015). Scoring rules and abnormally low bids criteria in construction tenders: A taxonomic review. Constr. Manage. Econ., 33(4), 259–278.

P. Orihuela, J. Orihuela and K. Ulloa (2011). Tools for Design Management in Building Projects. 19th Annual Conference of the International Group for Lean Construction, Lima, Peru, 13-15 Jul 2011.

P. Orihuela and K. Ulloa (2009). Metodología para Promover la Ingeniería Basada en Múltiples Alternativas, Anales del 3er Encuentro Latinoamericano de Economía y Gestión en la Construcción, ELAGEC III, 9-11 Septiembre, Bogotá, Colombia.

X. Brioso (2015). Teaching Lean Construction: Pontifical Catholic University of Peru Training Course in Lean Project & Construction Management. Procedia Engineering, 123 (2015) 85 – 93.

Lean Construction Institute (2017), available at: (March 20, 2017).

X. Brioso, D. Murguia, and A. Urbina (2017). Comparing three scheduling methods using BIM Models in the Last Planner System. Organization, Technology and Management in Construction: an International Journal, 9 (1), pp. 1604-1614.

X. Brioso, A. Humero, and C. Calderon-Hernandez (2018). Teaching how to integrate Last Planner System and the Safety and Health Management System. ABE (Advances in Building Education / Innovación Educativa en la Edificación), 2 (1), pp. 12-30.

X. Brioso (2017). Synergies between Last Planner System and OHSAS 18001 - A general overview. Building & Management, 1 (2), pp. 24-35.

G. Ballard (2000). The Last Planner System of Production Control, Ph.D. Dissertation, School of Civil Engrg., Univ. of Birmingham, U.K., May, 192 pp.

A. Frandson, K. Berghede and I. Tommelein (2013). Takt-Time Planning for Construction of Exterior Cladding. In: 21st Annual Conference of the International Group for Lean Construction. Fortaleza, Brazil, 21-2 Aug 2013.

G. Ballard and I. Tommelein (2016). Current Process Benchmarket for the Last Planner System. Lean Construction Journal, 2016(1), pp. 57–89.

G. Ballard and G. Howell (2003). An update on Last Planner. 11th Annu. Conf. Int. Gr. Lean Constr., pp. 1–10, 2003.

M.E. Vatne and F. Drevland (2016). Practical benefits of using Takt-time planning: a case Sstudy. Int. Gr. Lean Constr., no. 173, pp. 173–182. 2016.

C.M. Eastman, P. Teicholz, R. Sacks and K. Liston (2008). BIM handbook: A guide to building information modeling for owners, managers, architects, engineers, contractors, and fabricators, Wiley, Hoboken, N.J.

R. Sacks, C.M. Eastman, and G. Lee (2004). Parametric 3D modeling in building construction with examples from precast concrete. Autom. Constr., 13, 291–312.

BIMForum (2017). Level of Development Specification. Available at: (February 16, 2017).

R. Sacks, L. Koskela, B. Dave, and R. Owen (2010). Interaction of Lean and Building Information Modeling in Construction. Journal of Construction Engineering and Management, 2010, 136(9): 968-980.

Y. Arayici, P. Coates, L. Koskela, M. Kagioglou, C. Usher, and K. O'reilly (2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189-195.

B. Dave, L. Koskela A. Kiviniemi, R.L. Owen, and P. Tzortzopoulos Fazenda (2013). Implementing lean in construction: Lean construction and BIM-CIRIA Guide C725.Arroyo, P., Tommelein, I., & Ballard, G. (2016). Selecting Globally Sustainable Materials: A Case Study Using Choosing by Advantages, Journal of Construction Engineering and Management-ASCE, 142, 2, 10pp.

P. Tillmann and Z. Sargent (2016). Last Planner & Bim Integration: Lessons from a Continuous Improvement Effort. 24th Annual Conference of the International Group for Lean Construction. Boston, USA, 20-22 Jul 2016.

M. Toledo, K. Olivares and V. González (2016). Exploration of a Lean-Bim Planning Framework: A Last Planner System and Bim-Based Case Study. 24th Annual Conference of the International Group for Lean Construction. Boston, USA, 20-22 Jul 2016.

Indian Standards Institution (2005). IS 10600: Recommendations for Modular Coordination - Principles and Rules. Bureau of Indian Standards, New Delhi.

B. Oaslov (1984). A Model for Design and Analysis of Systems Built Buildings. Massachusetts Institute of Technology, Massachusetts, 1984.

M. Mahan Singh et al. (2015). Modular coordination and BIM: Development of rule based smart building components. Procedia Engineering, 123 (2015) 519 – 527.

V. Ghio (1997). Guía para la innovación tecnológica en la construcción. Ediciones Universidad Católica de Chile, Santiago, 1997.

X. Brioso, C. Calderon-Hernandez, J. Irizarry, and D. Paes (2019). Using Immersive Virtual Reality to Improve Choosing by Advantages System for the Selection of Fall Protection Measures. ASCE International Conference on Computing in Civil Engineering 2019. Atlanta, USA, 17-19 Jun 2019.

X. Brioso, C. Calderon-Hernandez, R. Aguilar, and M.A. Pando (2019). Preliminary Methodology for the Integration of Lean Construction, BIM and Virtual Reality in the Planning Phase of Structural Intervention in Heritage Structures. RILEM Bookseries, Volume 18, 2019, Pages 484-492.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.