Innovación docente y profesión. Competencias y metodologías activas en áreas técnicas = Teaching innovation and profession. Skills and active methodologies in technical studies

Mª Paz Sáez-Pérez


DOI: https://doi.org/10.20868/abe.2018.3.3832

Texto completo:

PDF

Resumen


Resumen

La problemática del sector de la construcción ha provocado durante los últimos años la pérdida de contacto y relación entre los ámbitos profesional y universitario, alejándose cada vez más los intereses del primero en busca de soluciones a su falta de actividad y solvencia económica, en detrimento del segundo, que requiere para ofrecer una formación de calidad, el contacto con la realidad y con experiencias en las que se encuentren implicados todos los agentes. Los objetivos propuestos se establecen en una doble vertiente, la orientada a la actividad docente y la orientada a la actividad formativa y profesional, para ello en el proyecto se diseña un procedimiento en el que se combina el desarrollo documental con la experiencia adquirida durante su realización con casos concretos, de forma directa y real, tratando de transmitir que más allá del éxito académico, las empresas y en general la actividad laboral se buscan profesionales con importantes conocimientos técnicos y capacidad competencial orientada a la obtención de resultados. La metodología ha consistido en el desarrollo de 3 fases, cada una de ellas con distintas actuaciones y procedimientos, ligados todos al desarrollo profesional del graduado en el contexto de la ingeniería y arquitectura, generando diversa documentación. La mejora de resultados obtenidos en la evaluación llevada a cabo tras la aplicación de la metodología descrita, durante los tres cursos anteriores, ha permitido concluir tras el análisis realizado que el conocimiento y la aplicación práctica de las competencias constituye una magnífica práctica y logro docente al poder dotar a nuestros alumnos de una formación en ámbitos documentales e instrumentales comunes a las materias en las que se aplica, con la finalidad de preparar futuros profesionales hábiles en el dominio de las cuestiones más específicas, eficientes y demandadas, abogando por las principales exigencias de nuestra Universidad: calidad y excelencia.

Abstract

The issues related to the construction sector, in the last years has caused the loss of contact and relationship, between the professional and the academic sector, moving further away the interest of the former because they have to find solutions, for the loss of activity and economic solvency, harming the latter because to offer quality formation, is necessary to have contact with reality and have all sort of experiences where all parties are involved. The proposed objectives are established in a double aspect, the one oriented to the teaching activity and the one oriented to the training and professional activity. For this purpose in the project, a procedure is designed in which the academic development is combined with the skills and experience acquired during its realization, with concrete cases, in a direct and real form, trying to convey that beyond the academic success, the companies and in general the labour market are looking for professionals with important technical knowledge and competent capacity oriented to obtaining results. The methodology consisted in the development of different phases, each of them with different actions and procedures, all linked to professional development in the context of engineering and architecture, generating diverse documentation. The improvement of the results obtained in the evaluation carried out after the application of the methodology described, during the three previous courses has allowed to conclude after the analysis carried out that the knowledge and the practical application of the competences constitutes a magnificent practice and teaching achievement, in able to provide our students with theoretical and practical training in areas common to the subjects in which they are applied, in order to prepare future skilled professionals in the domain of the most specific, efficient and demanded activities, advocating for the main requirements of our University: quality and excellence.


Palabras clave


Innovación en competencias; actividad docente; profesional-actividad; Ingeniero de edificación; innovation-skills; teaching-activity; professional-activity; building-engineer

Referencias


J. R. Savery, Interdisciplinary Journal of Problem-Based Learning, Overview of problem-based learning: Definitions and distinctions, 1(1), pp. 9–20, 2006.

T. Eberlein, J. Kampmeier, V. Minderhout, R. Moog, T. Platt, P. Varma-Nelson and H. White, Biochemistry and Molecular Biology Education, Pedagogies of engagement in science: A comparison of PBL, POGIL, and PLTL, , 36(4), pp. 262–273, 2008.

D. Evensen, and C. Hmelo (eds), Problem-based learning: A research perspective on learning interactions, Lawrence Erlbaum Associates, Mahwah, N.J., 2000. DOI:10.4324/9781410604989

K. E. Cook; Y-L. Han, T. Rutar Shuman, G. Mason. International Journal of EngineeringEducation, Effects of Integrating Authentic Engineering Problem Centered Learning on Student Problem Solving. Vol. 33, No. 1(A), pp. 272–282, 2017.

M. Prince, Journal of Engineering Education, Does active learning work? A review of the research, 93(3), pp. 223–231, 2004.

M.P. Sáez-Pérez, VII Foro sobre evaluación de la calidad de la investigación y de la educación superior, Binomio formación-competencia profesional, en busca del tandem perfecto (la innovación docente en ingeniería de edificación. Murcia, 2010.

M.P. Sáez-Pérez, A. Burgos-Núñez, I Jornadas sobre innovación docente y adaptación al EEES en las titulaciones técnicas, Innovación metodológica para la adquisición de competencias propuesta entre distintas asignaturas de la titulación de grado de Ingeniería de Edificación. Granada, 2010.

M.P. Sáez-Pérez, A. Burgos-Núñez, J.C. Olmo-García, J. C., II Jornadas sobre innovación docente y adaptación al EEES en las titulaciones técnicas, Experiencia docente interdisciplinar: colaboración metodológica entre asignaturas, Granada, 2011.

G. R. Normanand H. G. Schmidt, Academic Medicine, The psychological basis of problem-based learning: A review of the evidence, 67(9), pp. 557–565, 1992.

C. S. Lee, N. J. McNeill, E. P. Douglas, M. E. Koro-Ljungberg and D. J. Therriault, Journal of Engineering Education, Indispensable resource? A phenomenological study of textbook use in engineering problem solving, 102(2), pp. 269–288, 2013.

K. B. Fisher and K. R. Cook, Proceedings of the 2011 American Society of Engineering Education Annual Conference & Exposition, Teaching problem solving in engineering using analysis and simulation, Vancouver, BC, June 26–29, pp. 22.1400.1–22.1400.23, 2011.

D. R. Woods, A. N. Hrymak, R. R. Marshall, P. E. Wood, C. M. Crowe, T. W. Hoffman, J. D. Wright, P.

A. Taylor, K. A. Woodhouse and C. G. K. Bouchard, Journal of Engineering Education, Developing problem solving skills: The McMaster problem solving program, , 86(2), pp. 75–91, 1997.

E. P. Douglas, M. Koro-Ljungberg, N. J. McNeill, Z. T. Malcolm and D. J. Therriault, European Journal of Engineering Education, Moving beyond formulas and fixations: solving open-ended engineering problems, 37(6), pp. 627–651, 2012.

T. P. Yildirim, L. Shuman and M. Besterfield-Sacre, International Journal of Engineering Education, Modeleliciting activities: Assessing engineering student problem solving and skill integration processes, 26(4), pp. 831–845, 2012.

P. S. Steif, M. J. Lobue, L. B. Kara and A. L. Fay, Journal of Engineering Education, Improving problem solving performance by inducing talk about salient problem features, 99(2), pp. 135–142, 2010.

M. Kosior-Kazberuk, K. Falkowski Falkowski. Advances in Building Education, Role of employers in the process of Civil Engineering curriculum development: A case in Poland, 1 (1), pp. 56-67, 2017. 10.20868/abe.2017.1.3512

D. H. Jonassen, J. Strobel and C. B. Lee, Journal of Engineering Education, Everyday problem solving in engineering: Lessons for engineering educators, 95(2), pp. 139–151, 2006.

D. H. Jonassen and W. Hung, The Interdisciplinary Journal of Problem-based Learning, All problems are not equal: Implications for Problem-based learning, 2(2), pp. 6–28, 2008.

Accreditation Board for Engineering and Technology (ABET), criteria for accrediting engineering programs 2017–2018, http://www.abet.org/accreditation/accreditation-criteria/accreditation-policy-and-procedure-manual-appm-2017-2018/

National Academy of Engineering, https://www.nae.edu/

M.P. Sáez, M.A. Frechilla, M.A. Rodríguez, Opción, La rúbrica: metodología evaluativa-formativa en el grado en edificación. Experiencia interuniversitaria, Nº Especial 4: 846-867, 2015.

M. A. Frechilla Alonso, M. A. Rodríguez Estéban, M. P. Sáez Pérez, A. B. Ramos Gavilán, Aula virtual: contenidos y elementos, El TFG en la titulación de arquitectura técnica: homogeneidad en el proceso de evaluación, colección McGraw‐Hill Education, ISBN 978‐84‐48612‐61‐0, 137-148, 2016.

J. Strobel, J. Wang, N. R. Weber and M. Dyehouse, Computers & Education, The role of authenticity in design-based learning environments: The case of engineering education, 64, pp. 143–152, 2013.

T. P. Yildirim, L. Shuman and M. Besterfield-Sacre, International Journal of Engineering Education, Modeleliciting activities: Assessing engineering student problem solving and skill integration processes, 26(4), pp. 831–845, 2012.

R. E. Barr, M. G. Pandy, A. J. Petrosino, R. J. Roselli, S. Brophy and R. A. Freeman, Advances in Engineering Education, Challenge-based instruction: The VaNTH biomechanics learning modules, 1(1), pp. 1–30, 2007.

R. J. Roselli and S. P. Brophy, IEEE Engineering in Medicine and Biology Magazine, Redesigning a biomechanics course using challenge-based instruction, 22(4), pp. 66–70, 2003.

J. M. Falco Boudet, J. L. Huertas Talon, International Journal of Engineering Education, Use of Wiki as a Postgraduate Education Learning Tool: A Case Study. Vol. 28, No. 6, pp. 1334–1340, 2012.

J.F. Strayer. Learning Environments Research, How learning in an inverted classroom influences cooperation, innovation and task orientation, vol. 15, 171-193, 2012.

G. Mason, T.R. Shuman, and K.E. Cook, Proceedings of the Annual Conference of the American Society of Engineering Education, Inverting (Flipping) Classrooms – Advantages and Challenges, 2013.

M.J. Lage, G.J. Platt, and M. Treglia, The Journal of Economic Education, Inverting the Classroom: A Gateway to Creating an Inclusive Learning Environment, vol. 31, no. 1, Winter 2000.

J.L. Bishop and M.A. Verleger, Proceedings of the Annual Conference of the American Society ofEngineering Education. The Flipped Classroom: A Survey of the Research, 2013.

M. C. Verona Martel, Gestión en el Tercer Milenio, Rev. de Investigación Fac. de Ciencias Administrativas, UNMSM, La fijación de objetivos en la docencia universitaria de disciplinas Administrativas: un comentario, Vol. 8, Nº 15, Lima, Julio 2005.

Ley Orgánica 2/2006, de 3 de mayo, de Educación. BOE núm. 106, de 4 de mayo de 2006. Referencia: BOE-A-2006-7899

Catálogo de actuaciones profesionales de la arquitectura técnica. http://www.coaatgr.es/web/wp-content/uploads/2014/08/COAATGR_catalogo_actuaciones_web.pdf

G. Mason, T. Rutar Shuman and K. Cook, IEEE Transactions on Education, Effectiveness of an Inverted Classroom Concept to Traditional Delivery in an Upper Division Engineering Course, 56(4), pp. 430–435, 2013.

D. H. Jonassen, What makes scientific problems difficult? In D. H. Jonassen (ed), Learning to solve complex, scientific problems, Taylor & Francis, New York, NY, pp. 3–23, 2007.

G. Polya, How to Solve it: A New Aspect of Mathematical Method, 2nd ed., Doubleday Anchor, Garden City, NY, 1959.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.