Desarrollo de una metodología basada en el aprendizaje multidimensional en las disciplinas técnicas = Development of a methodology based on multidimensional learning in technical disciplines

Daniel García de Frutos, Amparo Verdú Vázquez, Francisco David de la Peña Esteban, Oscar López Zaldívar


doi:10.20868/abe.2017.1.3508

Texto completo: PDF

Resumen


Resumen

Las metodologías de aprendizaje tradicionales no son coherentes con los procesos de aprendizaje y descriptivos que irrumpen en las disciplinas de la mano de programas informáticos. La evolución del campo de las enseñanzas técnicas es muy veloz. Sin embargo, no hay tecnología que sea lo suficientemente rápida en su implantación que no permita el introducir nuevas formas de enseñanza.No debemos equivocarnos al hablar de aprendizaje multidimensional solamente en el sentido, que se le ha dado a veces, de aquel que proviene de diferentes fuentes (de la escuela, del entorno laboral, del barrio, de la familia,…) Se trata de darle un sentido de literalidad, basándose en las características dimensionales que en este caso se adoptan de los sistemas gráficos BIM (Building Information Modeling). En una primera fase se lleva a cabo en las disciplinas MEP (referentes a las instalaciones Mecánicas, Eléctricas e Hidrosanitarias–Plomería.) Para ello hacemos una pequeña descripción de las dimensiones consideradas agrupadas, por tratarse de un resumen, que las identifique con las actividades propuestas. No se trata solamente de un modelo creador, que es como está diseñado, sino también se ha realizado una adaptación como modelo descriptivo. Se usa las dimensiones 1D y 2D para definir las condiciones de partida del aprendizaje, representar a grandes rasgos la tecnología a estudiar y poder empezar a utilizar métodos gráficos para la comprensión del objeto de aprendizaje. Se usan las dimensiones 3D a 7D para la definición pormenorizada y el conocimiento profundo que van desde aspectos que incluyen: definición material, procesos de ejecución, costes, incidencia medioambiental, ciclo de vida y mantenimiento. La dimensión 8D propone la Socialización del aprendizaje. Debate y compartir las soluciones aportadas o analizar las propuestas de futuro. La dimensión 9D consiste en una Evaluación crítica. Nos permite contrastar el nivel de profundización, se incluye en el aprendizaje. Llegar a saber el LOD (Level of Development) a que ha llegado cada estudiante nos permite reiniciar el proceso con garantías de mejora.

Abstract

Traditional learning methodologies are not coherent with the learning and descriptive processes that break into the disciplines in the hand of software. The evolution of the field of technical education is very fast. However, there is no technology that is fast enough in its implementation that does not allow the introduction of new forms of teaching. We should not be mistaken when speaking of multidimensional learning only in the sense that it has sometimes been given of that which comes from different sources [1] (school, work environment, neighborhood, family, ...) Tries to give it a sense of literality, based on the dimensional characteristics that in this case are adopted of the BIM (Building Information Modeling). In the first phase it is carried out in the disciplines MEP (referring to the Mechanical, Electrical and Hydro sanitary-Plumbing facilities). To do this we make a small description of the dimensions considered grouped, as a summary that identifies them with the proposed activities. It is not only a creative model, which is how it is designed, but also an adaptation has been made as a descriptive model. Dimensions 1D and 2D are used to define the starting conditions of learning, to outline the technology to be studied and to be able to begin to use graphic methods for understanding the learning object. 3D dimensions to 7D are used for detailed definition and in-depth knowledge ranging from aspects including:  material definition, execution processes,  costs, environmental impact, life cycle and maintenance. The 8D dimension proposes the Socialization of learning. Debate and share the solutions provided or analyze future proposals. The 9D dimension consists of a Critical Assessment. It allows us to compare the level of deepening, is included in the learning. Getting to know the LOD (Level of Development) to which each student has arrived allows us to restart the process with guarantees of improvement.


Palabras clave


Innovación docente; aprendizaje; educación; BIM; Teaching innovation, learning, education, BIM

Referencias


Vilalta Pallarés, E. (1985). CAD/CAM: Productividad y beneficios. Revista APD, nº 83, p. 29-35.

Barison M.B., Santos, E.T. (2010). BIM teaching strategies: an overview of the current approaches. ICCCBE 2010 International Conference on Computing in Civil and Building Engineering. DOI:https://doi.org/10.1016/j.proeng.2016.04.047

López-Zaldívar, O., Verdú-Vázquez, A.,Gil- López, T., Lozano-Diez, R. (2017) The implementation of BIM technology in university teaching: The case of the Polytechnic University of Madrid. . Int J Eng Educ. Vol. 33, No. 2(A), pp. 712–722.

Nejat, A., Darwish, M.M., Ghebrab, T. (2012) BIM Teaching Strategy for Construction Engineering Students. ASEE Annual Conference, 2012, pp. 25.262.1– 25.262.13.

Verdú-Vázquez, A.; Torrecillas-Lozano, C.; López-Zaldívar, O. & Gil-López, T. (2015) Impact of the economic crisis and the implementation of the ehea on the bachelor's degree in building in Spain. Int J Eng Educ 2015;31(6):1711-1721

Becerik-Gerber B., Gerber D.J., Ku K. (2011) The pace of technological innovation in architecture, engineering, and construction education: integrating recent trends into the curricula. ITcon Journal of Information Technology in Construction, Vol. 16, pg. 411- 432,http://www.itcon.org/2011/24

Koskela, E L. (2015). Teaching BIM and Lean Construction at the University of Huddersfield and at Aalto University. Les journées de l’enseignement de la Maquette Numérique et du BIM en France. Conference 16 june 2015. L’ESITC Caen.

Barison M.B., Santos, E.T. (2011). Bim Teaching: Current International Trends. Gestão e Tecnol. Proj., vol. 6, no. 2, pp. 67–80, 2011

Nakapan, W. (2011). Challenge of teaching BIM in the first year of university.

Holland, R., Messner, J., Parfitt, K., Poerschke, U., Pihlak, M., Solnosky, R. (2010). Integrated Design Courses Using BIM as the Technology Platform. Academic Best Practices/Implementing BIM into Higher Education Curriculum, National Institute of Building Sciences, Annual Meeting/EcoBuild America Conference.

Huang, Y., Zou, Y. (2013). Study on BIM Technology Teaching Under The Background of Three-dimensional Design. 2nd International Conference on Science and Social Research (ICSSR 2013).

Forgues, D., Staub-French, S., Farah, L.M. (2011). Teaching Building Design and Construction Engineering. Are we ready for the paradigm shift?. Proceedings of the Canadian Engineering Education Association. 23-Jun- 2011.

Clevenger, C. M., Ozbek, M., Glick, S., Porter, D. (2010). Integrating BIM into Construction Management Education. The BIM-Related Academic Workshop, 2010.

Calderón Patier, C., Escalera Izquierdo,G. (2008). La evaluación de la docencia ante el reto del espacio europeo de educación superior (EEES). Educación XX1. Vol. 11 (2008) DOI: http://dx.doi.org/10.5944/educxx1.11.0.316

Mcgough, D., Ahmed, A., Austin, S. (2013). Integration of BIM in higher education: Case study of the adoption of BIM into Coventry University’s Department of Civil Engineering, Architecture and Building. Architecture and Building in of the Sustainable Building and Construction Conference SB13, Coventry University (pp. 3-5).


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.